The rate of the crystallization front in nickel depending on its orientation and supercooling temperature: molecular dynamic simulation
The influence of the supercooling temperature and the orientation of the crystallization front relative to the crystal on the front velocity were studied by the method of molecular dynamics. Three front orientations were considered: (100), (110) and (111). Crystallization proceeds faster at the (100) orientation, and slower at the (110) and (111) orientations. The kinetic coefficients of crystallization for the considered orientations were 0.38, 0.29 and 0.27 m/(s∙K), respectively. According to the data obtained, the crystallization rate with an increase in the supercooling temperature does not increase monotonically, but has a maximum at about 0.7 ∙ T m, (where T m is the equilibrium melting temperature), after which it gradually decreases, which is explained by a decrease in the diffusion mobility of atoms in the amorphous phase.
Keywords
molecular dynamics,
metal,
crystallization,
crystallization front,
crystallization rateAuthors
Poletaev G.M. | Altai State Technical University | gmpoletaev@mail.ru |
Karakulova I.V. | Altai State Technical University | mail_for_irina@inbox.ru |
Rakitin R.Y. | Altai State University | movehell@gmail.com |
Всего: 3
References
Galenko P.K., Ankudinov V., Reuther K., et al. // Philos. Trans. R. Soc. A: Mathematical, Physical and Engineering Sciences. - 2019. - V. 377. - P. 20180205.
Jha S.K., Karthika S., Radhakrishnan T.K. // Resource-Ef cient Technologies. - 2017. - V. 3. - P. 94-100.
Стеценко В.Ю. // Литье и металлургия. - 2013. - T. 69. - № 1. - C. 48-54.
Mazhukin V.I., Shapranov A.V., Perezhigin V.E., et al. // Math. Models Comp. Simulat. - 2017. - V. 9. - P. 448-456.
Mendelev M.I., Zhang F., Song H., et al. //j. Chem. Phys. - 2018. - V. 148. - P. 214705.
Sun G., Xu J., Harrowell P. // Nature Mater. - 2018. - V. 17. - P. 881-886.
Chan W.-L., Averback R.S., Cahill D.G., Ashkenazy Y. // Phys. Rev. Lett. - 2009. - V. 102. - P. 095701.
Zhang H.Y., Liu F., Yang Y., Sun D.Y. // Sci. Rep. - 2017. - V. 7. - 10241.
Turnbull D., Cech R.E. //j. Appl. Phys. - 1950. - V. 21. - P. 804.
Leung K.K., Chiu C.P., Kui H.W. // Scripta Metall. Mater. - 1995. - V. 32. - P. 1559-1563.
MacDonald C.A., Malvezzi A.M., Spaepen F. //j. Appl. Phys. - 1989. - V. 65. - P. 129.
Coriell S.R., Turnbull D. // Acta Metall. - 1982. - V. 30. - P. 2135.
Broughton J.Q., Gilmer G.H., Jackson K.A. // Phys. Rev. Lett. - 1982. - V. 49. - P. 1496.
Mendelev M.I., Rahman M.J., Hoyt J.J., Asta M. // Modelling Simulat. Mater. Sci. Eng. - 2010. - V. 18. - P. 074002.
Hoyt J.J., Asta M., Karma A. // Interface Sci. - 2002. - V. 10. - P. 181-189.
Sun D.Y., Asta M., Hoyt J.J. // Phys. Rev. B. - 2004. - V.69. - P. 024108.
Cleri F., Rosato V. // Phys. Rev. B. - 1993. - V. 48. - No. 1. - P. 22-33.
Кулабухова Н.А., Полетаев Г.М., Старостенков М.Д. и др. // Изв. вузов. Физика. - 2011. - Т. 54. - № 12. - C. 86-91.
Poletaev G.M., Zorya I.V. // Tech. Phys. Lett. - 2020. - V. 46. - No. 6. - P. 575-578.
Poletaev G.M., Zorya I.V., Starostenkov M.D. //j. Micromech. Mol. Phys. - 2018. - V. 3. - P. 1850001.
Poletaev G.M., Zorya I.V. //j. Exp. Theor. Phys. - 2020. - V. 131. - No. 3. - P. 432-436.
Poletaev G.M., Rakitin R.Y. // Phys. Solid State. - 2021. - V. 63. - No. 5. - P. 682-687.
Liu C.L., Cohen J.M., Adams J.B., Voter A.F. // Surf. Sci. - 1991. - V. 253. - P. 334-344.