Magnetically tunable bandpas filter of teraherz radiation | Izvestiya vuzov. Fizika. 2022. № 10. DOI: 10.17223/00213411/65/10/55

Magnetically tunable bandpas filter of teraherz radiation

A magnetically tunable bandpass filter of terahertz radiation is created and investigated. The filter is a cell with a magnetic fluid and a system of inductance coils made in the form of Helmholtz rings. The magnetic fluid consists of automotive synthetic motor oil and 5BDSR alloy microparticles with a mixed amorphous-crystalline structure. When a cell is placed between the inductance coils and under the action of an external magnetic field, the microparticles are oriented along the magnetic field vector, forming periodic filamentous structures. The filter is controlled by changing the magnitude of the magnetic induction. Eighteen samples of similar band-pass filters were prepared and studied, differing in the properties of the magnetic fluid (concentration and size of magnetic particles). The presented results are useful for creating bandpass magnetically controlled terahertz radiation filters with the required parameters.

Download file
Counter downloads: 28

Keywords

THz spectroscopy, agglomerates, magnetic fluid, controlled terahertz polarization-sensitive filters, inductance coils, THz bandpass filters

Authors

NameOrganizationE-mail
Kochnev Z.S.National Research Tomsk State Universitykochnev_zakhar@mail.ru
Kistenev Y.V.National Research Tomsk State Universityyuk@iao.ru
Borisov A.V.National Research Tomsk State Universityborisov@phys.tsu.ru
Всего: 3

References

Borovkova M., Khodzitsky M., Demchenko P., et al. // Biomed. Opt. Express. - 2018. - V. 9. - No. 5. - P. 2266-2276.
Cherkasova O., Nazarov M., Shkurinov A. // Opt. Quantum Electron. - 2016. - V. 48. - No. 3. - P. 1-12.
Gusev S.I., Borovkova M.A., Strepitov M.A., Khodzitsky M.K. // Proc. SPIE. - 2015. - V. 9537. - P. 95372A-1-95372A-6.
You B., Lu J.-Y. // Opt. Express. - 2016. - V. 24. - No. 16. - P. 18013-18023.
Gente R., Koch M. // Plant Methods. - 2015. - V. 11. - No. 15. - P. 1-9.
Nagatsuma T., Ducournau G., Renaud C. // Nature Photonics. - 2016. - V. 10. - P. 371-379.
Saqlain M., Idrees N., Cao X., et al. // Appl. Opt. - 2019. - V. 58. - No. 25. - P. 6762-6769.
Ahi K., Shahbazmohamadi S., Asadizanjani N. // Opt. Laser. Eng. - 2018. - V. 104. - P. 274-284.
Hernandez-Serrano A., Corzo-Garcia S., Garcia-Sanchez E., et al. // Appl. Opt. - 2014. - V. 53. - No. 33. - P. 7872-7876.
Yang Q., Deng B., Wang H., Qin Y. // Electron. Lett. - 2016. - V. 52. - No. 25. - P. 2059-2061.
Ferguson B., Wang S., Gray D., et al. // Opt. Lett. - 2002. - V. 27. - No. 15. - P. 1312-1314.
Mohr T., Breuer S., Giuliani G., Elsäßer W. // Opt. Express. - 2015. - V. 23. - No. 21. - P. 27221-27229.
Kemp M.C., Taday P.F., Cole B.E., et al. // Proc. SPIE. - 2003. - V. 5070. - P. 44-52.
Federici J., Schulkin B., Huang F., et al. // Semicond. Sci. Technol. - 2005. - V. 20. - No. 7. - P. 266-280.
Krimi S., Klier J., Jonuscheit J., et al. // Appl. Phys. Lett. - 2016. - V. 109. - No. 2. - P. 021105-1-021105-4.
Soboleva V.Y., Gomon D.A., Sedykh E.A., et al. //j. Opt. Technol. - 2017. - V. 84. - No. 8. - P. 521-524.
Gomon D., Sedykh E., Rodrígues S., et al. // Chin. Opt. - 2018. - V. 11. - No. 1. - P. 47-59.
Grebenchukov A.N., Zaitsev A.D., Khodzitsky M.K. // Chin. Opt. - 2018. - V. 11. - No. 2. - P. 166-173.
Shahounvand H., Fard A. // Physics: Prog. Inform. Opt. - 2020. - V. 2. - No. 11. - P. 1-7.
Sun D., Qi L., Liu Z. // Result. Phys. - 2020. - V. 16. - P. 102887.
Gavdush A., Chernomyrdin N., Lavrukhin D., et al. // Opt. Express. - 2020. - V. 28. - No. 18. - P. 26228-26238.
Ruan J.-F., Lan F., Tao Z., et al. // Phys. Lett. A. - 2022. - V. 421. - P. 127705.
Akter N., Karabiyik M., Pala N. // IEEE Photonics Conference IPC. - 2019.
Xu L.-L., Xue J.-L., Fan Y.-X., et al. //j. Phys. D: Appl. Phys. - 2022. - V. 55. - P. 025108.
Huang Y., He Q., Zhang D., Kanamori Y. // Opt. Rev. - 2021. - V. 28. - P. 92-98.
Li T., Luo X., Hu F., et al. //j. Phys. D: Appl. Phys. - 2021. - V. 54. - No. 43. - P. 435105-1-435105-6.
Одит М.А., Вендик И.Б., Козлов Д.С., Торбенко В.Н. // Сб. тр. Всерос. конф. «Микроэлектроника СВЧ». - 2012. - С. 335-339.
Chen Y., Cheng J., Liang C. // Adv. Cond. Matter. Phys. - 2020. - V. 2020. - P. 1-6.
Hu F., Wang H., Zhang X., et al. // IEEE J. Selected Topics Quantum Electron. - 2019. - V. 25. - No. 3. - P. 4700207.
Li S., Liu H., Sun Q., Huang N. // IEEE Photon. Technol. Lett. - 2015. - V. 27. - No. 7. - P. 752-754.
Wei Z., Jiang Y., Zhang S., et al. // IEEE Photon. J. - 2022. - V. 14. - No. 1. - P. 5905306.
Chen S., Fan F., Chang S., et al. // Opt. Express. - 2014. - V. 22. - No. 6. - P. 6313-6321.
Зятьков Д.О., Кочнев З.С., Князькова А.И., Борисов А.В. // Изв. вузов. Физика. - 2019. - Т. 62. - № 3. - С. 15-20.
Кочнев З.С., Князькова А.И., Мещерякова Т.А. и др. // Изв. вузов. Физика. - 2021. - Т. 64. - № 11. - С. 134-138.
 Magnetically tunable bandpas filter of teraherz radiation | Izvestiya vuzov. Fizika. 2022. № 10. DOI: 10.17223/00213411/65/10/55

Magnetically tunable bandpas filter of teraherz radiation | Izvestiya vuzov. Fizika. 2022. № 10. DOI: 10.17223/00213411/65/10/55