Determination of the parameters of multi-carrier spectrum in CdHgTe. II. Discrete mobility spectrum analysis | Izvestiya vuzov. Fizika. 2022. № 10. DOI: 10.17223/00213411/65/10/98

Determination of the parameters of multi-carrier spectrum in CdHgTe. II. Discrete mobility spectrum analysis

The paper, which consists of two parts, considers in detail the method of discrete mobility spectrum analysis (DMSA) proposed by the authors as well as its application to determine the parameters of charge carriers in CdHgTe. The first part of the work was a brief review of the existing methods for analyzing the field dependences of the Hall coefficient and conductivity in structures with a multi-particle spectrum of charge carriers. In the second part of the work, the physical meaning of the mobility spectrum envelope in the mobility spectrum analysis (MSA) method is analyzed and the main idea, features and algorithm of the DMSA method are presented. On the example of studying the electrical properties of numerous samples of CdHgTe epitaxial films, the high sensitivity of the DMSA was confirmed. Using DMSA, we analyzed a number of dependences of the conductivity tensor components σxx and σ xy on the magnetic field B available in the literature, and compared the results of the analysis with those obtained with other methods.

Download file
Counter downloads: 17

Keywords

CdHgTe, electrical properties, charge carriers parameters, mobility spectra, method of discrete mobility spectra

Authors

NameOrganizationE-mail
Izhnin I.I.Scientific Research Company “Electron-Carat”; National Research Tomsk State Universityi.izhnin@carat.electron.ua
Voitsekhovskii A.V.National Research Tomsk State Universityvav43@mail.tsu.ru
Korotaev A.G.National Research Tomsk State Universitykor@mail.tsu.ru
Mynbaev K.D.Ioffe Institutemynkad@mail.ioffe.ru
Всего: 4

References

Кульчицкий Н., Наумов А., Старцев В. // Электроника: Наука, Технология, Бизнес. - 2020. - № 6(00197). - С. 114-121.
Варавин В.С., Дворецкий С.А., Михайлов Н.Н. и др. // Автометрия. - 2020. - Т. 56. - № 5. - С. 12-56.
Бурлаков И.Д. // Успехи инфракрасной фотосенсорики: сб. обзорных статей к 75-летию образования НПО «Орион». - М.: АО «НПО «Орион», 2021. - С. 247-270.
Shojaei B., Wang S., Gruenewald J., et al. //j. Electron. Mater. - 2022. - V. 51. - Iss. 9. - P. 4714-4720.
Izhnin I.I., Mynbaev K.D., Świątek Z., et al. // Infr. Phys. Technol. - 2020. - V. 109. - No. 9. - P. 103338.
Ижнин И.И., Войцеховский А.В., Коротаев А.Г., Мынбаев К.Д. // Изв. вузов. Физика. - 2022. - Т. 65. - № 9. - С. 106-121.
Dziuba Z. // Phys. Stat. Sol. (b). - 1987. - V. 140. - No. 4. - P. 213-223.
GoldM.C., Nelson D.A. //j. Vac. Sci. Technol. A. - 1986. - V. 4. - No. 4. - P. 2040-2046.
Beck W.A., Anderson J.R. //j. Appl. Phys. - 1987. - V. 62. - No. 2. - P. 541-553.
Dziuba Z., Górska M. //j. Phys. III. - 1992. - V. 2. - No. 1. - P. 99-110.
Antoszewski J., Seymour D.L., Faraone L., et al. //j. Electron. Mater. - 1995. - V. 24. - No. 9. - P. 1255-1262.
Meyer J.R., Hoffman C.A., Antoszewski J., Faraone L. //j. Appl. Phys. - 1997. - V. 81. - No. 2. - P. 709-713.
Meyer J.R., Hoffman C.A., Bartoli F.J., Antoszewski J., Faraone L. // US Patent No. 5789931. - 1998.
Rothman J., Meilhan J., Perrais G., et al. //j. Electron. Mater. - 2006. - V. 35. - No. 6. - P. 1174-1184.
Umana-Membreno G.A., Antoszewski J., Faraone L., et al. //j. Electron. Mater. - 2010. - V. 39. - No. 7. - P. 1023-1029.
Beck W.A. //j. Appl. Phys. - 2021. - V. 129. - No. 4. - Art. 165109.
Богобоящий В.В., Ижнин И.И. // Вестник Кременчугского государственного политехнического университета. - 2003. - № 2. - С. 10-13.
Izhnin I.I., Bogoboyashchyy V.V., Sizov F.F. // Proc. SPIE. - 2005. - V. 5881. - P. 58810U.
Бахтин П.А., Дворецкий С.А., Варавин В.С. и др. // ФТП. - 2004. - Т. 38. - Вып. 10. - С. 1203-1206.
Hoffman C.A., Meyer J.R., Bartoli F.J., et al. // Phys. Rev. B. - 1989. - V. 39. - No. 6. - P. 52081-5221.
Varavin V.S., Vasiliev V.V., Dvoretsky S.A., et al. // Opto-Electron. Rev. - 2003. - V. 11. - No. 2. - P. 99-111.
Якушев М.В., Брунев Д.В., Варавин В.С. и др. // ФТП. - 2011. - Т. 45. - Вып. 3. - С. 396-401.
Белогорохов А.И., Денисов И.А., Смирнова Н.А., Белогорохова Л.И. // ФТП. - 2004. - Т. 38. - Вып. 1. - С. 84-93.
Izhnin I.I., Mynbaev K.D., Voitsekhovskii A.V., et al. // Opto-Electron. Rev. - 2017. - V. 25. - No. 2. - P. 148-170.
Izhnin I.I., Vоitsekhovskii А.V., Коrоtаеv А.G., et al. // Infr. Phys. Technol. - 2017. - V. 81. - No. 3. - P. 52-58.
Izhnin I.I., Syvorotka I.I, Fitsych O.I., et al. // Semicond. Sci. Technol. - 2019. - V. 34. - No. 3. - Art. 035009.
Umana-Membreno G.A., Kala H., Antoszewski J., et al. //j. Electron. Mater. - 2013. - V. 42. - No. 11. - P. 3108-3113.
Chu J., Sher A. Physics and Properties of Narrow Gap Semiconductors. - N.Y.: Springer Science+Business Media, 2008. - 605 p.
Meyer J.R., Hoffman C.A., Bartoli F.J., et al. //j. Electron. Mater. - 1996. - V. 25. - No. 8. - P. 1157-1164.
Antoszewski J., Musca C.A., Dell J.M., Faraone L. //j. Electron. Mater. - 2000. - V. 29. - No. 6. - P. 837-840.
 Determination of the parameters of multi-carrier spectrum in CdHgTe. II. Discrete mobility spectrum analysis | Izvestiya vuzov. Fizika. 2022. № 10. DOI: 10.17223/00213411/65/10/98

Determination of the parameters of multi-carrier spectrum in CdHgTe. II. Discrete mobility spectrum analysis | Izvestiya vuzov. Fizika. 2022. № 10. DOI: 10.17223/00213411/65/10/98