Features of phase formation in Al - TiO2 powder mixture under changing temperature
The paper analyzes the reaction of phase formation occurring during the synthesis in the Al-TiO2 system. The problem of the phase composition change in the vicinity of the particles, where the change of the regions occupied by the phases is related to the moving boundaries, is formulated. An approximate analytical solution is constructed. Kinetic regularities of the strengthening particle formation and the matrix composition evolution in its vicinity have been studied under the assumption that the reactions start at a temperature higher than the melting temperature of aluminum, which surrounds the titanium oxide solid particles. The temperature is a function of the time and follows from the solution of the macro problem. The accompanying stresses and strains both in the vicinity of the interface and averaged over the cell volume are evaluated. During cooling both diffusion and reactions are inhibited, which leads to slowing down the growth of stresses, however, their values remain rather high.
Keywords
composite,
transition layer,
reaction cell,
moving boundary,
concentration stressesAuthors
Anisimova M.A. | Institute of Strength Physics and Materials Science of SB RAS; National Research Tomsk Polytechnic University | anisimova_mawa@mail.ru |
Knyazeva A.G. | Institute of Strength Physics and Materials Science of SB RAS; National Research Tomsk Polytechnic University | anna-knyazeva@mail.ru |
Всего: 2
References
Raji S.A., Popoola A.P.I., Pityana S.L., et al. Laser Based Additive Manufacturing Technology for Fabrication of Titanium Aluminide-Based Composites in Aerospace Component Applications. - London, United Kingdom: IntechOpen, 2019. - 248 p. - DOI: 10.5772/intechopen.85538.
Kulkarni M., Mazare A., Schmuki P. // Nanomedicine. - Publisher: One Central Press, 2014. - P. 111-136.
Shahzad A., Zadorozhnyy V.Yu., Pavlov M.D., et al. //j. Alloys Compd. - 2018. - V. 731. - P. 1295-1302.
Yoruk G., Ozdemir O. // Intermetallics. - 2012. - V. 25. - P. 60-65.
Liu Y., Wang D., Deng C., et al. //j. Alloys Compd. - 2015. - V. 628. - P. 208-212.
Vojtěch D., Kubatık T., Pavlıckova M., Maixner J. // Intermetallics. - 2006. - V. 14. - P. 1181-1186.
Gasper A.N.D., Catchpole-Smith S., Clare A.T. //j. Mater. Process. Technol. - 2017. - V. 239. - P. 230-239.
Mosallanejad M.H., Niroumand B., Aversa A., Saboori A. //j. Alloys Compd. - 2021. - V. 872. -159567. - DOI 10.1016/j.jallcom.2021.159567.
Wang P., Eckert J., Prashanth K., et al. // Trans. Nonferrous Met. Soc. China. - 2020. - V. 30. - P. 2001-2034.
Князева А.Г. // Прикладная механика и техническая физика. - 2021. - Т. 62. - № 6(370). - С. 130-137. - DOI: 10.15372/PMTF20210615.
Кириленко В.Г., Гришин Л.И., Долгобородов А.Ю., Бражников М.А. // Горение и взрыв. - 2020. - Т. 13. - № 1. - С. 145-155.
Лигачев А.Е., Потемкин Г.В., Лепакова О.К. и др. // ФГВ. - 2018. - Т. 54. - № 2. - С. 39-45.
Horvitza D., Gotmana I., Gutmanasa E.Y., Claussen N. //j. Eur. Ceram. Soc. - 2002. - V. 22. - P. 947-954.
Yeh C.L., Kuo C.W., Chu Y.C. //j. Alloys Compd. - 2010. - V. 494. - Iss. 1-2. - P. 132-136.
Кобяков В.П., Зозуля В.Д., Сичинава М.А. и др. // ФГВ. - 2005. - Т. 41. - № 4. - С. 60-66.
Meng S., Zhang X., Zhang W. // Key Eng. Mater. - 2007. - V. 336-338. - P. 2340-2343.
Zhu H.G., Min J., Ai Y.L., Wu Q. // Adv. Mater. Res. - 2010. - V. 97-101. - P. 1624-1627. - DOI: 10.4028/www.scientific.net/amr.97-101.1624.
Kainuma R., Palm M., Inden G. // Intermetallics. - 1994. - V. 2. - P. 321-332.
Fan R., Liu B., Zhang J., et al. // Mater. Chem. Phys. - 2005. - V. 91. - P. 140-145. - DOI: 10.1016/j.matchemphys.2004.11.004.
Feng C.F., Froyen L. // Composites: Part A. - 2000. - V. 31. - P. 385-390.
Gheorghe I., Rack H.J. // Mater. Sci. Technol. - 2002. - V. 18(10). - P. 1079-1084. - DOI: 10.1179/026708302225005990.
Sun Y., Wan Z., Hu L., et al. // Rare Metal Mater. Eng. - 2017. - V. 46. - Iss. 8. - P. 2080-2086.
Liu J., Su Y., Xu Y., et al. // Rare Metal Mater. Eng. - 2011. - V. 40. - Iss. 5. - P. 0753-0756.
Illekova E., Gachon J., Rogachev A., et al. // Thermochim. Acta. - 2008. - V. 469. - P. 77-85.
Školáková A., Leitner J., Salvetr P., et al. // Mater. Chem. Phys. - 2019. - V. 230. - P. 122-130.
Пригожин И., Кондепуди Д. Современная термодинамика. От тепловых двигателей до диссипативных структур. - М.: Мир, 2002. - 461 с.
Некрасов Е.А., Смоляков В.К., Максимов Ю.М. // ФГВ. - 1981. - Т. 17. - № 5. - С. 39-46.
Некрасов Е.А., Максимов Ю.М., Алдушин А.П. // ФГВ. - 1980. - T. 16. - № 3. - С. 113-120.
Ковалев О.Б., Неронов В.А. // ФГВ. - 2004. - Т. 40. - № 2. - С. 52-60.
Khina B.B., Formanek B., Solpan I. // Physica B: Cond. Matter. - 2005. - V. 355. - No. 1-4. - P. 14-31.
Бокштейн Б.С. Диффузия в металлах. - М.: Металлургия, 1978. - 248 с.
Knyazeva A.G., Sharkeev Yu.P. // Key Eng. Mater. - 2016. - V. 712. - P. 220-225. - DOI: 10.4028/www.scientific.net/KEM.712.220.
Анисимова М.А. // Изв. вузoв. Физика. - 2021. - Т. 64. - № 4. - С. 16-23. - DOI: 10.17223/00213411/64/4/16.
Anisimova M., Knyazeva A., Sevostianov I. // Int. J. Eng. Sci. - 2020 - V. 153. - P. 103307.
Erdélyi Z., Schmitz G. // Acta Mater. - 2012. - V. 60. - P. 1807-1817.
Knyazeva A.G. // Rev. Adv. Mater. Technol. - 2022. - V. 4. - No. 1. - P. 33-42. - DOI: 10.17586/2687-0568-2022-4-1-33-42.
Князева А.Г. Введение в локально-равновесную термодинамику физико-химических превращений в деформируемых средах. - Томск: Изд-во ТГУ, 1996. - 146 с.
Winnicki M., Łatka L., Jasiorski M., Baszczuk A. // Surf. Coat. Technol. - 2021. - V. 405. - P. 126516. - DOI: 10.1016/j.surfcoat.2020.126516.
Трусов П.В., Швейкин А.И., Кондратьев Н.С., Янц А.Ю. // Физич. мезомех. - 2020. - Т. 23. - № 6. - С. 33-62. - DOI: 10.24411/1683-805X-2020-16003.