Energy impact on the substrate during dual magnetron deposition of tialn coatings
The dependences of the energy flux density on the substrate and the specific energy transferred to the coating on duty cycle in the process of dual magnetron deposition of TiAlN coatings were obtained. It is shown that by decreasing the duty cycle from 40 to 6% the energy flux to the substrate is increased by 20-30% with unchanged average discharge power. Together with a decrease in the deposition rate of coatings in the high pulse power mode, there is a sixfold increase in the specific energy that the coating receives during growth. Thus, adjustment of the duty cycle can be considered as a way to control the energy impact on the sputtered coating, on which its structure and properties depend. It has been shown that TiAlN coatings obtained at low values of the duty cycle and a high level of energy impact on the substrate have high hardness and wear resistance.
Keywords
dual magnetron sputtering,
TiAlN,
energy flow,
hardness,
wear resistanceAuthors
Grenadyorov A.S. | Institute of High Current Electronics of SB RAS; Applied Electronics Ltd | 1711sasha@mail.ru |
Zakharov A.N. | Institute of High Current Electronics of SB RAS | zare17@yandex.ru |
Oskirko V.O. | Institute of High Current Electronics of SB RAS; Applied Electronics Ltd | oskirkovo@gmail.com |
Sidelev D.V. | National Research Tomsk Polytechnic University | dimas167@tpu.ru |
Oskomov K.V. | Institute of High Current Electronics of SB RAS | oskomov@lae.hcei.tsc.ru |
Solovyev A.A. | Institute of High Current Electronics of SB RAS | andrewsol@mail.ru |
Всего: 6
References
Soham Das, Spandan Guha, Ranjan Ghadai, Bibhu Prasad Swain // Mater. Chem. Phys. - 2021. - V. 258. - Art. ID 123866.
Wei Yongqiang, Zong Xiaoya, Wu Zhongzhen, et al. // Surf. Coat. Technol. - 2013. - V. 229. - P. 191-196.
Mohamed Ben Hassine, Hans-Olof Andrén, Anand H.S. Iyer, et al. // Surf. Coat. Technol. - 2021. - V. 421. - Art. ID 127361.
Gillesa S., Bourhila K., Ikeda S., et al. // Surf. Coat. Technol. - 1997. - V. 93-95. - P. 285-290.
PalDey S., Deevi S.C. // Mater. Sci. Eng.: A. - 2003. - V. 342(1-2). - P. 58-79. - DOI: 10.1016/S0921-5093(02)00259-9.
Klostermann H., Böcher B., Fietzke F., et al. // Surf. Coat. Technol. - 2005. - V. 200. - P. 760-764.
Kutschej K., Mayrhofer P.H., Kathrein M., et al. // Surf. Coat. Technol. - 2005. - V. 200(7). - P. 2358-2365.
Anders A. // Surf. Coat. Technol. - 2014. - V. 257. - P. 308-325.
Alhafian M-R., Chemin J-B., Fleming Y., et al. // Surf. Coat. Technol. - 2021. - V. 423. - Art. ID 127529.
Karpov D.A. // Surf. Coat. Technol. - 1997. - V. 96. - P. 22-33.
Yanhui Zhao, Guoqiang Lin, Jinquan Xiao, et al. // Appl. Surf. Sci. - 2011. - V. 257. - No. 13. - P. 5694-5697.
Alami J., Maric Z., Busch H., et al. // Surf. Coat. Technol. - 2014. - V. 255. - P. 43-51.
Chakrabarti K., Jeong J.J., Hwang S.K., et al. // Thin Solid Films. - 2002. - V. 406. - P. 159-163.
Keunecke M., Stein C., Bewilogua K., et al. // Surf. Coat. Technol. - 2010. - V. 205. - P. 1273-1278.
Barshilia H.C., Yogesh K., Rajam K.S. // Vacuum. - 2009. - V. 83. - P. 427-434.
Oskirko V.O., Zakharov A.N., Pavlov A.P., et al. //j. Phys.: Conf. Ser. - 2019. - V. 1393. - Art. ID 012051.
Kim G., Lee S., Hahn J. // Surf. Coat. Technol. - 2005. - V. 193. - No. 1. - P. 213-218.
Deutsch H., Kersten H., Rutscher A. // Contrib. Plasma Phys. - 1989. - V. 29. - No. 3. - P. 263-284.
Hussla I., Enke K., Grundwald H., et al. //j. Phys. D. Appl. Phys. - 1987. - V. 20. - P. 880-896.
Oskirko V.O., Zakharov A.N., Semenov V.A., et al. // Vacuum. - 2022. - V. 200. - Art. ID 111026.
Ekpe S., Dew K. //j. Vacuum Sci. Technol. A. - 2002. - V. 20. - P. 1877.
Oliver W.C., Pharr G.M. //j. Mater. Res. - 2004. - V. 19. - No. 1. - P. 3-20.
Musil J., Jaroš M., Čerstvý R., Haviar S. //j. Vac. Sci. Technol. A. - 2017. - V. 35. - Art. ID 020601.
Дьяченко Ф.А. Физико-механические свойства трех- и четырехкомпонентных сплавов на основе титана, синтезированных на TiNi-подложке электронно-пучковым способом: дис. … к.т.н. - Томск, 2022. - 185 с.