On melting thresholds of the film-substrate system under irradiation with a low-energy high-current electron beam
The effect of film material thermal conductivity on the melting threshold of the film-substrate system depending on the film thickness during a low-energy high-current electron beam (LEHCEB) irradiation was analyzed based on the numerical solution of the one-dimensional unsteady heat equation with a volumetric thermal source. Experimentally obtained oscillograms of the beam current at the collector and the accelerating voltage were used to simulate the heating source. Numerical variations of the film thermal conductivity were carried out within a wide range, overlapping the entire range for real materials. The dependence of the melting threshold of a homogeneous material on thermal conductivity was determined. The general regularities of the behavior of film and substrate melting thresholds depending on the film thickness were also established.
Keywords
low-energy high-current electron beam,
melting threshold,
thermal conductivity,
film-substrate system,
functional dependenceAuthors
Markov A.B. | Tomsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences | a.markov@hq.tsc.ru |
Solovyov A.V. | Tomsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences | andrio1974@gmail.com |
Всего: 2
References
Марков А.Б., Миков А.В., Озур Г.Е. и др. // Приборы и техника эксперимента. - 2011. - № 6. - C. 862-866.
Pogrebnjak A.D., Bakharev O.G., Sushko V.V., et al. // Surf. Coat. Technol. - 1998. - V. 99. - No. 1-2. - P. 98-110.
Zhang С., Lv P., Xia H., et al. // Vacuum. - 2019. - V. 169. - P. 263-270.
Zhang C., Guan J., Tian Sh., et al. // Surf. Coat. Technol. - 2022. - V. 444. - No. 128640. - 9 p.
Osintsev K.A., Gromov V.E., Vorob’ev S.V., et al. // Steel in Translation. - 2022. - V. 4. - 10 p.
Zhang C., Lv P., Cai J., et al. // Appl. Surf. Sci. - 2017. - V. 422. - P. 582-590.
Tang G., Luo D., Fan G., et al. // Nucl. Instrum. Methods Phys. Res. B. - 2017. - V. 398. - P. 9-12.
Luo D., Tang G., Ma X., et al. // Appl. Surf. Sci. - 2015. - V. 351. - P. 1067-1074.
Neiman A.A., Semin V.O., Meisner L.L., Ostapenko M.G. //j. Alloys Compd. - 2019. - V. 803. - P. 721-729.
Meisner L.L., Semin V.O., Mironov Yu.P., et al. // Mater. Today Commun. - 2018. - V. 17. - P. 169-179.
Grenadyorov A.S., Solovyev А.А., Oskomov K.V., et al. // Vacuum. - 2022. - V. 204. - No. 111369. - 11 p.
Yukui Gao // Appl. Surf. Sci. - 2008. - V. 257. - P. 7455-7460.
Markov A.B., Solovyov A.V., Yakovlev E.V., et al. //j. Phys.: Conf. Ser. - 2021. - V. 2064. - No. 012058. - 8 p.
Болгарский А.В., Мухачев Г.А., Щукин В.К. Термодинамика и теплопередача. - М.: Высшая школа, 1975. - 495 с.
Rotshtein V., Ivanov Yu., Markov A. // Materials Surface Processing by Directed Energy Techniques / ed. Y. Pauleau. - Oxford: Elsevier, 2006. - Chap. 6. - P. 205-240.
Markov A.B., Rotshtein V.P. // Nucl. Instrum. Methods Phys. Res. B. - 1997. - V. 132. - No. 1. - P. 79-86.