Cylindrical streamers formed in air and nitrogen at low pressures
The results of experimental studies of analogs of columnar red sprites are presented. As is known, the development of sprites is due to the formation of cylindrical streamers at an altitude of 50-100 km from sea level. The velocities of a plasma diffuse jet (PDJ) obtained in a laboratory, which is an analogue of a sprite, were measured, and its emission spectra were recorded. Estimates are made of the magnitude of the reduced electric field strength in the PDJ at various distances from the electrodes initiating the discharge. It has been established that the shape and color of PDJ, which are also cylindrical streamers, at air pressures of 0.2-1.5 Torr corresponds to the color and shape of columnar red sprites. It is shown that the change in the color of diffuse plasma jets is associated with an increase in the reduced electric field.
Keywords
streamer,
red sprite,
plasma diffuse jet,
low air pressures,
repetitively pulsed dischargeAuthors
Tarasenko V.F. | Institute of High Current Electronics Siberian Branch of the Russian Academy of Sciences | vft@loi.hcei.tsc.ru |
Baksht E.Kh. | Institute of High Current Electronics Siberian Branch of the Russian Academy of Sciences | beh@loi.hcei.tsc.ru |
Vinogradov N.P. | Institute of High Current Electronics Siberian Branch of the Russian Academy of Sciences | vinikitavin@mail.ru |
Sorokin D.A. | Institute of High Current Electronics Siberian Branch of the Russian Academy of Sciences | sdm-a70@loi.hcei.tsc.ru |
Всего: 4
References
Sentman D.D., Wescott E.M. // Phys. Plasmas. - 1995. - V. 2. - Iss. 6. - P. 2514-2522.
Rodger C.J. // Rev. Geophys. - 1999. - V. 37. - Iss. 3. - P. 317-336.
Pasko V.P. // Plasma Sources Sci. Technol. - 2007. - V. 16. - Art. S13.
Williams E., Valente M., Gerken E., Golka R. Sprites, Elves and Intense Lightning Discharges. - Dordrecht: Springer, 2006. - P. 237-251.
Sprites, Elves and Intense Lightning Discharges / eds. M. Füllekrug, E.A. Mareev, M.J. Rycroft. - Springer Science & Business Media, 2006. - V. 225.
McHarg M.G., Stenbaek-Nielsen H.C., Kammae T. // Geophys. Res. Lett. - 2007. - V. 34. - Art. L06804.
Kanmae T., Stenbaek-Nielsen H.C., McHarg M.G., Haaland R.K. //j. Phys. D: Appl. Phys. - 2012. - V. 45. - Iss. 27. - Art. 275203.
Pasko V.P., Yair Y., Kuo C.L. // Space Sci. Rev. - 2012. - V. 168. - Iss. 1. - P. 475-516.
Singh M., Sharma P.K., Pathak P.P. //j. Electromag. Anal. Appl. - 2022. - V. 14. - Iss. 3. - P. 31-37.
Franz R.C., Nemzek R.J., Winckler J.R. // Science. - 1990. - V. 249. - P. 48-51.
Sentman D.D., Wescott E.M., Osborne D.L., et al. // Geophys. Res. Lett. - 1995. - V. 22. - Iss. 10. - P. 1205-1208.
Garipov G.K., Khrenov B.A., Klimov P.A., et al. //j. Geophys. Res.: Atmospheres. - 2013. - V. 118. - Iss. 2. - P. 370-379.
Jehl A., Farges T., Blanc E. //j. Geophys. Res.: Space Phys. - 2013. - V. 118. - P. 454-461.
Neubert T., Østgaard N., Reglero V., et al. // Space Sci. Rev. - 2019. - V. 215. - Iss. 2. - P. 1-17.
Facebook.com. [Internet]. 2021 [cited 2021 January 01]. Available from: http://www.facebook.com/frankie.lucena.1.
Neubert T., Rycroft M., Farges T., et al. // Surveys Geophys. - 2008. - V. 29. - Iss. 2. - P. 71-137.
Stenbaek-Nielsen H.C., Haaland R., McHarg M.G., et al. //j. Geophys. Res.: Space Phys. - 2010. - V. 115. - Art. A003E12.
Qin J., Celestin S., Pasko V.P., et al. // Geophys. Res. Lett. - 2013. - V. 40. - Iss. 17. - P. 4777-4782.
Malagon-Romero A., Teunissen J., Stenbaek-Nielsen H.C., et al. // Geophys. Res. Lett. - 2020. - V. 47. - Art. e2019GL085776.
Pasko V.P., Qin J., Celestin S. // Surveys Geophys. - 2013. - V. 34. - Iss. - 6. - P. 797-830.
Goto Y., Ohba Y., Narita K. //j. Atmos. Electr. - 2007. - V. 27. - Iss. 2. - P. 105-112.
Соснин Э.А., Бабаева Н.Ю., Кожевников В.Ю. и др. // УФН. - 2021. - Т. 191. - Вып. 2. - С. 199-219.
Arcanjo M., Montanya J., Urbani M., Lorenzo V. // Geophys. Res. Lett. - 2021. - V. 48. - Art. e2021GL095601.
Opaits D.F., Shneider M.N., Howard P.J., et al. // Geophys. Res. Lett. - 2010. - V. 37. - Art. L14801.
Tarasenko V., Vinogradov N., Baksht E., Sorokin D. //j. Atmos. Sci. Res. - 2022. - V. 05. - Iss. 04. - P. 26-36.
Бакшт Е.Х., Виноградов Н.П., Тарасенко В.Ф. // Оптика атмосферы и океана. - 2022. - Т. 35. - № 9. - С. 777-781.
Тарасенко В.Ф., Бакшт Е.Х., Виноградов Н.П. // Прикладная физика. - 2022. - № 4. - С. 11-17.
Райзер Ю.П. Физика газового разряда. - Долгопрудный: Интеллект, 2009. - 736 с.
Stenbaek-Nielsen H.C., McHarg M.G., Kanmae T., Sentman D.D. // Geophys. Res. Lett. - 2007. - V. 34. - Iss. 11. - Art. L11105.
Paris P., Aints M., Valk F., et al. //j. Phys. D: Appl. Phys. - 2005. - V. 38. - Iss. 21. - P. 3894-3899.
Starikovskaia S.M., Anikin N.B., Pancheshnyi S.V., Starikovskii A.Yu. // Proceedings of SPIE «Selected Research Papers on Spectroscopy of Nonequilibrium Plasma at Elevated Pressures». - 2002. - V. 4460. - P. 63-72.
Morrill J., Bucsela E., Siefring C., et al. // Geophys. Res. Lett. - 2002. - V. 29. - Iss. 10. - P. 1462.
Кузнецов В.С., Тарасенко В.Ф., Соснин Э.А. // Изв. вузов. Физика. - 2019. - Т. 62. - № 5. - С. 149-154.
Tarasenko V., Baksht E., Kuznetsov V., et al. //j. Atmos. Sci. Res. - 2020. - V. 03. - Iss. 04. - P. 28-37.
Tarasenko V.F., Sosnin E.A., Skakun V.S., et al. // Phys. Plasmas. - 2017. - V. 24. - Iss. 4. - Art. 043514.