Investigation of the process of formation of superconducting coatings of Nb3Sn by magnetron sputtering for accelerators
The article considers some regularities of the formation of niobium stannide coatings during their deposition by magnetron sputtering using a stoichiometric target. The optimal mode of operation of the magnetron source is determined, the element-phase composition, the microstructure of the formed films, as well as their change in the process of high-temperature annealing are investigated. The research results indicate that the coatings optimal in terms of elemental and phase composition were obtained in the deposition mode at an argon pressure in the working chamber of 0.3 Pa and a high-vacuum annealing temperature of 800 °C.
Keywords
magnetron sputtering,
metal plasma,
triniobium stannide,
superconducting coatings,
high-temperature annealingAuthors
Yurjev Yu.N. | National Research Tomsk Polytechnic University; V.E. Zuev Institute of Atmospheric Optics of SB RAS | yurjev@tpu.ru |
Bordulev Yu.S. | National Research Tomsk Polytechnic University | bordulev@tpu.ru |
Kharisova A.E. | National Research Tomsk Polytechnic University | aeh3@tpu.ru |
Selezneva T.V. | National Research Tomsk Polytechnic University | tvselezneva@tpu.ru |
Savelev A.I. | National Research Tomsk Polytechnic University | ais50@tpu.ru |
Kazimirov A.I. | V.E. Zuev Institute of Atmospheric Optics of SB RAS | aikazimirov@tusur.ru |
Всего: 6
References
Posen S., Hall D.L. // Supercond. Sci. Technol. - 2017. - V. 30. - No. 3. - P. 033004.
Pudasaini U. et al. // Supercond. Sci. Technol. - 2019. - V. 32. - No. 4. - P. 045008.
Saito K., Kojima Y., Furuya T., et al. // Proceedings of the Fourth Workshop on RF Superconductivity, Kek, Tsukuba, Japan. - 1990. - No. KEK-89-21.
Юревич С.В. и др.// Доклады национальной академии наук Беларуси. - 2016. - Т. 60. - № 1. - С. 37-40.
Palmieri V. et al. // Nucl. Instrum. Methods Phys. Res. A: Accelerators, Spectrometers, Detectors and Associated Equipment. - 1993. - V. 328. - No. 1-2. - P. 280-284.
Calatroni S. // Physica C: Superconductivity. - 2006. - V. 441. - No. 1-2. - P. 95-101.
Chiaveri E. et al. // Proc. 6th Int. Conf. RF Superconductivity (SRF93), Newport News, VA, USA. - 1993. - P. 746.
Sublet A. et al. // 5th Int. Particle Accelerator Conf. (IPAC2014), Dresden, Germany. - JACoW Publishing, 2014. - P. 2571-2573.
Grassellino A. et al. // Supercond. Sci. Technol. - 2013. - V. 26. - No. 10. - P. 102001.
Godeke A. Nb3Sn for Radio Frequency Cavities. - Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States), 2006. - No. LBNL-62140.
Sharma R.G. // Cryogenics. - 1987. - V. 27. - No. 7. - P. 361-378.
Godeke A. // Supercond. Sci. Technol. - 2006. - V. 19. - No. 8. - P. R68.
Deambrosis S.M. 6 GHz Cavities: A Method to Test A15 Intermetallic Compounds Rf Properties. - 2008.
Allen L. et al. // IEEE Trans. Magn. - 1983. - V. 19. - No. 3. - P. 1003-1006.
Carta G. et al. // Proc.Int. Workshop on Thin Films and New Ideas for Pushing the Limits of RF Superconductivity (Padua). - 2006.
Hillenbrand B. et al. // IEEE Trans. Magn. - 1977. - V. 13. - No. 1. - P. 491-495.
Posen S. et al. // Supercond. Sci. Technol. - 2021. - V. 34. - No. 2. - P. 025007.
Rossi A.A. et al. // Proc. SRF. - 2009. - P. 149-154.
Ilyina E.A. et al. // Supercond. Sci. Technol. - 2019. - V. 32. - No. 3. - P. 035002.
Sayeed M.N. et al. // Appl. Surf. Sci. - 2021. - V. 541. - P. 148528.
Vandenberg J. et al. // IEEE Trans. Magn. - 1985. - V. 21. - No. 2. - P. 819-822.
Valizadeh R. et al. // Proc. IPAC'19. - 2019. - P. 2818-2821.
Xiao L. et al. // Proc. SRF'19. - 2019. - P. 846-847.
Han J. et al. // Appl. Radiat. Isot. - 2010. - V. 68. - No. 9. - P. 1699-1702.
Nasu T. et al. //j. Non-Cryst. Solids. - 1998. - V. 232-234. - P. 594-599.