Formation of intermetal coatings using tin and niobium plasma by magnetron sputtering
Some regularities in the formation of niobium-tin coatings using magnetron sputtering have been studied. The coatings were obtained both by layer-by-layer and simultaneous deposition from two plasma sources. The optimal mode of operation of the magnetron source was determined to ensure the surface concentration of tin at the level of 19-26 at.%. The elemental composition and microstructure of the obtained films have been studied. A study was made of the structural-phase composition after annealing of the samples in a high-vacuum furnace at a temperature of 800°C. The research results indicate the formation of an intermetallic phase of triniobium stannide, while the best results in terms of the expected superconducting properties were obtained in the mode of simultaneous coating deposition.
Keywords
magnetron sputtering,
metal plasma,
triniobium stannide,
superconducting coatings,
high-temperature annealingAuthors
Yurjev Yu.N. | National Research Tomsk Polytechnic University; V.E. Zuev Institute of Atmospheric Optics of SB RAS | yurjev@tpu.ru |
Kharisova A.E. | National Research Tomsk Polytechnic University | aeh3@tpu.ru |
Selezneva T.V. | National Research Tomsk Polytechnic University | tvselezneva@tpu.ru |
Savelev A.I. | National Research Tomsk Polytechnic University | ais50@tpu.ru |
Kazimirov A.I. | V.E. Zuev Institute of Atmospheric Optics of SB RAS | aikazimirov@tusur.ru |
Всего: 5
References
Grassellino A., Romanenko A. // arXiv preprint arXiv:1305.2182. - 2013.
Posen S., Hall D.L. // Supercond. Sci. Technol. - 2017. - V. 30. - No. 3. - P.033004.
Grassellino A., Romanenko A., Sergatskov D., et al. // Supercond. Sci. Technol. - 2013. - V. 26. - No. 10.- P.102001.
Godeke A. // Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States), 2006. - No. LBNL-62140.
Sharma R.G. // Cryogenics. - 1987. - V. 27. - No. 7. - P. 361-378.
Godeke A. // Supercond. Sci. Technol. - 2006. - V. 19. - No. 8. - P. R68.
Deambrosis S.M. 6 GHz Cavities: A Method to Test A15 Intermetallic Compounds Rf Properties. - 2008.
Allen L., Beasley M., Hammond R., Turneaure J. // IEEE Trans. Magn. - 1983. - V. 19. - No. 3. - P. 1003-1006.
Carta G., Rossetto G., Zanella P., Crociani L. // Proc.Int. Workshop on Thin Films and New Ideas for Pushing the Limits of RF Superconductivity (Padua). - 2006.
Hillenbrand B., Martens H., Pfister H., et al. // IEEE Trans. Magn. - 1977. - V. 13. - No. 1. - P. 491-378.
Rossi A.A., Deambrosis S.M., Stark S. // Proc. SRF. - 2009. - P. 149-154.
Ilyina E.A., Rosaz G., Descarrega J.B., et al. // Supercond. Sci. Technol. - 2019. - V. 32. - No. 3. - P. 035002.
Sayeed M.N., Pudasaini U., Charles E. // Appl. Surf. Sci. - 2021. - V. 541. - P. 148528.
Wu C.T., Kampwirth R.T., Hafstrom J.W. //j. Vacuum Sci. Technol. - 1977. - V. 14. - No. 1. - P. 134-137.
Charlesworth J.P., Macphail I., Madsen P.E. //j. Mater. Sci. - 1970. - V. 5. - No. 7. - P. 580-603.
Straumanis M.E., Zyszczynski S. //j. Appl. Crystallogr. - 1970. - V. 3. - No. 1. - P. 1-6.
Bardeen J., Stephen M.J. // Phys. Rev. - 1965. - V. 140. - No. 4A. - P. A1197.