Molecular dynamic study of thermal conductivity of quasi-one-dimensional silicon polyprismane | Izvestiya vuzov. Fizika. 2022. № 12. DOI: 10.17223/00213411/65/12/96

Molecular dynamic study of thermal conductivity of quasi-one-dimensional silicon polyprismane

The thermal conductivity of silicon polyprismanes with sections in the form of regular pentagons and hexagons has been studied by the method of nonequilibrium molecular dynamics. The Tersoff potential was used to model interatomic interactions. The thermal conductivity of the polyprismanes is calculated depending on their length and temperature, as well as the temperature difference at the ends of the polyprismanes. It is established that silicon polyprismanes are stable up to a temperature of 550 K, after which their melting occurs. The amount of heat transferred through the polyprismanes is proportional to the time and temperature difference, but does not depend on the length of the system if this length is in the range of 10-25 nm.

Download file
Counter downloads: 24

Keywords

polyprismanes, silicon nanostructures, Tersoff potential, molecular dynamics, thermal conductivity of nanostructures

Authors

NameOrganizationE-mail
Tsydenov K.A.National University of Science and Technology «MISiS»kirillcydenov@yandex.ru
Всего: 1

References

Minyaev R.M., Minkin V.I., Gribanova T.N., et al. //j. Organic Chem. - 2003. - V. 68. - No. 22. - P. 8588.
Lewars E.G. Modeling Marvels: Computational Anticipation of Novel Molecules. - Springer Science & Business Media, 2008. - 287 p.
Maslov M.M., Grishakov K.S., Gimaldinova M.A., et al. // Fuller., Nanotubes Carbon Nanostruct. - 2020. - V. 28. - No. 2. - P. 97-103.
Gimaldinova M.A., Katin K.P., Salem M.A., et al. // Lett. Mater. - 2018. - V. 8. - No. 4. - P. 454-457.
Hirsch A. // Angewandte Chem.Int. Ed. - 2002. - V. 41. - No. 11. - P. 1853-1859.
Perim E., Paupitz R., Botari T., et al. // Phys. Chem. Chem. Phys. - 2014. - V. 16. - No. 44. - P. 24570-24574.
Katin K.P., Grishakov K.S., Gimaldinova M.A., et al. // Comput. Mater. Sci. - 2020. - V. 174. - P. 109480.
Sergeyev D. // Adv. Nano Res. - 2021. - V. 10. - No. 5. - P. 471.
Kuzmin S., Duley W.W. // Phys. Lett. A. - 2010. - V. 374. - No. 11-12. - P. 1374-1378.
Kuzmin S., Duley W.W. // Fuller., Nanotubes Carbon Nanostruct. - 2012. - V. 20. - No. 8. - P. 730.
Katin K.P., Shostachenko S.A., Avkhadieva A.I., et al. // Adv. Phys. Chem. - 2015. - V. 2015. - P. 506894.
Poater A., Saliner A.G., Cavallo L., et al. // Current Med. Chem. - 2012. - V. 19. - No. 30. - P. 5219-5225.
Poater A., Saliner A.G., Solà M., et al. // Expert Opinion on Drug Delivery. - 2010. - V. 7. - No. 3. - P. 295-305.
Poater A., Saliner A.G., Carbó-Dorca R., et al. //j.Comput. Chem. - 2009. - V. 30. - No. 2. - P. 275-284.
Equbal A., Srinivasan S., Sathyamurthy N. //j. Chem. Sci. - 2017. - V. 129. - No. 7. - P. 911-917.
Shostachenko S.A., Maslov M.M., Prudkovskii V.S., et al. // Phys. Solid State. - 2015. - V. 57. - No. 5. - P. 1023-1027.
Katin K.P., Maslov M.M., et al. // Mol. Simulat. - 2018. - V. 44. - No. 9. - P. 703-707.
Manzetti S., Lu T., Behzadi H., et al. // RSC Adv. - 2015. - V. 5. - No. 95. - P. 78192.
Katin K.P., Javan M.B., Maslov M.M., et al. // Chem. Phys. - 2017. - V. 487. - P. 59-66.
Vach H. // Nano Lett. - 2011. - V. 11. - No. 12. - P. 5477-5481.
Motamedi M., Safdari E., Nikzad M. // Int.Commun. Heat Mass Transfer. - 2021. - V. 129. - P. 105692.
Tang Y.W., Huang Z., Wang X., et al. //j.Comput. Theor. Nanosci. - 2006. - V. 3. - No. 5. - P. 824-829.
Shen H.J. // Comput. Mater. Sci. - 2009. - V. 47. - No. 1. - P. 220-224.
Erhart P., Albe K. // Phys. Rev. B. - 2005. - V. 71. - No. 3. - P. 035211.1-035211.14.
Zhang X., Nguyen H., Paci J.T., et al. // npj Comput. Mater. - 2021. - V. 7. - P. 113.
Liu B., Reddy C.D., Jiang J., et al. //j. Phys. D: Appl. Phys. - 2014. - V. 47. - No. 16. - P. 165301.
Yoo S., Lee B., Kang K. // Nanotechnology. - 2021. - V. 32. - No. 29. - P. 295702.
Baimova J.A., Dmitriev S.V., Zhou K. // Superlattices and Microstructures. - 2013. - V. 54. - P. 39-46.
Jellinek J., Goldberg A. //j. Chem. Phys. - 2000. - V. 113. - No. 7. - P. 2570-2582.
Young P. The leapfrog method and other symplectic algorithms for integrating Newton’s laws of motion: Lecture notes in University of California. - Santa Cruz, 2014.
Цыденов К.А. Программное обеспечение для генерирования атомных координат кремниевых наноструктур // Свидетельство о государственной регистрации ПрЭВМ, рег. № 2021669249 от 25.11.2021. - М.: Роспатент, 2021.
Anvarifard M.K., Ramezani Z., Amiri I.S., et al. // Mater. Sci. Semicond. Process. - 2020. - V. 107. - P. 104849.
Salaway R.N., Zhigilei L.V. // Int. J. Heat Mass Transfer. - 2014. - V. 70. - P. 954-964.
 Molecular dynamic study of thermal conductivity of quasi-one-dimensional silicon polyprismane | Izvestiya vuzov. Fizika. 2022. № 12. DOI: 10.17223/00213411/65/12/96

Molecular dynamic study of thermal conductivity of quasi-one-dimensional silicon polyprismane | Izvestiya vuzov. Fizika. 2022. № 12. DOI: 10.17223/00213411/65/12/96