Propagation of an electromagnetic wave at an oblique incidence on a plane parallel dielectric plate | Izvestiya vuzov. Fizika. 2023. № 1. DOI: 10.17223/00213411/66/1/36

Propagation of an electromagnetic wave at an oblique incidence on a plane parallel dielectric plate

Using the electrodynamic analysis of a 3D model of a plane-parallel ideal dielectric plate, the propagation of plane linearly polarized electromagnetic waves is studied when their angle of incidence j deviates from the perpendicular to the plane of the plate. It was found that in the case of parallel polarization, when the electric field vector of the wave is located in the plane of incidence and the magnetic field vector is parallel to the plane of the plate, the quality factor of the observed half-wave resonance with increasing j first drops to a minimum when approaching the Brewster angle, and then increases, tending to infinity at j ® 90°. In the case of perpendicular polarization, when the magnetic field vector is located in the plane of incidence, and the electric field vector is parallel to the plane of the plate, the quality factor of the half-wave resonance constantly increases with increasing j, also tending to infinity at j ® 90°. However, the dependencies of the observed monotonic increase in resonant frequencies with increasing angle of incidence are identical for both polarizations. The results of the experiment on a plane-parallel plate made of ultrahigh molecular weight polyethylene with a dielectric constant of 2.5, carried out using broadband horn antennas, are in good agreement with the electrodynamic calculation of the 3D model.

Download file
Counter downloads: 51

Keywords

dielectric plate, plane electromagnetic wave, oblique electromagnetic wave incidence, frequency response, half wave resonance, quality factor, Brewster angle

Authors

NameOrganizationE-mail
Belyaev B.A.Siberian State University of Science and Technology; Siberian Federal University; Kirensky Institute of Physics, Federal Research Center KSC SB RASbelyaev@iph.krasn.ru
Voloshin A.S.Siberian State University of Science and Technology; Siberian Federal University; Kirensky Institute of Physics, Federal Research Center KSC SB RASvoloshin@iph.krasn.ru
Selyutin G.E.Institute of Chemistry and Chemical Technologysgend@icct.ru
Govorun I.V.Siberian State University of Science and Technology; Kirensky Institute of Physics, Federal Research Center KSC SB RASgovorun-ilya@mail.ru
Galeev R.G.Siberian State University of Science and Technology; Joint Stock Company «Scientific production enterprise «Radiosviaz»krtz@mail.ru
Всего: 5

References

Wang D.S., Qu S.-W., Chan C.H. // Handbook of Antenna Technologies / eds. Z.N. Chen et al. - Singapore: Springer, 2016. - P. 471-525. - DOI: 10.1007/978-981-4560-44-3_23.
Anwar R.S., Mao L., Ning H. // Appl. Sci. - 2018. - V. 8. - P. 1689. - DOI: 10.3390/app8091689.
Sivasamy R., Kanagasabai M. // Int. J. RF Microwave Comput. Aided. Eng. - 2019. - e21691. - DOI: 10.1002/mmce.21691.
Anand Y., Mittal A. // Prog. Electromagn. Res. C. - 2020. - V. 101. - P. 13-28. DOI: 10.1109/LMWC.2016.2517066.
Bai H., Yan M., Li W., Wang J. // IEEE Anten. and Wireless Propagat. Lett. - 2021. - V. 20. - No. 6. - P. 1108-1112. - DOI: 10.1109/LAWP.2021.3073907.
Melo A.M., Kornberg M.A., Kaufmann P., et al. // Appl. Opt. - 2008. - V. 47. - No. 32. - P. 6064. - DOI: 10.1364/AO.47.006064.
Garcia-Vidal F.J., Martin-Moreno L., Ebbesen T.W., Kuipers L. // Rev. Mod. Phys. - 2010. - V. 82. - P. 729. - DOI: 10.1103/revmodphys.82.729.
Tomasek P. // MATEC Web Conf. - 2016. - V. 76. - P. 03009. - DOI: 10.1051/matecconf/20167603009.
Oh S., Lee H., Jung J.-H., Lee G.-Y. // Int. J. Microwave Sci. Technol. - 2014. - V. 2014. - Art. ID 857582. - DOI: 10.1155/2014/857582.
Ade P.A.R., Pisano G., Tucker C., Weaver S. // Proc. SPIE. - 2006. - V. 6275. - P. 62750U-1. - DOI: 10.1117/12.673162.
Mahaveer U., Chandrasekaran K.T., Mohan M.P., et al. //j. Electromagn. Waves Applicat. - 2021. - V. 35. - No. 7. - P. 861-873. - DOI: 10.1080/09205071.2020.1865206.
Bouslama M., Traii M., Denidni T.A., Gharsallah A. // IEEE Anten. and Wireless Propagat. Lett. - 2016. - V. 15. - No. 7. - P. 1159-1162. - DOI: 10.1109/lawp.2015.2497357.
Bouslama M., Traii M., Denidn T.A., Gharsallah A. // Mediterranean Microwave Symposium (MMS). - 2017. - DOI: 10.1109/mms.2017.8497065.
Esparza N., Alcón P., Herrán L.F. // IEEE Microwave and Wireless Comp. Lett. - 2008. - V. 53. - No. 4. - P. 389-402. - DOI: 10.1109/LMWC.2016.2517066.
Zhou H., Qu S.-B., Wang J.-F., et al. // Electron. Lett. - 2012. - V. 48. - No. 1. - P. 11-12. - DOI: 10.1109/LAWP.2021.3073907.
Munk B.A. Frequency Selective Surfaces: Theory and Design. - N.Y.: Wiley-Interscience, 2000. - 415 p.
Abadi S.M.A.M.H., Behdad N. // IEEE Trans. Anten. Propag. - 2015. - V. 63. - No. 11. - P. 4766-4774.
Беляев Б.А., Тюрнев В.В., Волошин А.С. и др. // ДАН. - 2020. - Т. 493. - С. 5-10. - DOI: 10.31857/S2686740021020024.
Беляев Б.А., Тюрнев В.В., Волошин А.С. и др. // ДАН. - 2020. - Т. 494. - С. 75-81. - DOI: 10.31857/S2686740020050041.
Belyaev B.A., Tyurnev V.V. // Opt. Lett. - 2016. - V. 41. - No. 3. - P. 536-539. - DOI: 10.1364/OL.41.000536.
Беляев Б.А., Тюрнев В.В., Шабанов В.Ф. // ДАН. - 2021. - Т. 497. - С. 5-11. - DOI: 10.31857/S2686740021020024.
Беляев Б.А., Тюрнев В.В., Шабанов В.Ф. // ДАН. - 2014. - Т. 456. - № 4. - С. 413-416. - DOI: 10.7868/S0869565214160105.
Belyaev B.A., Tyurnev V.V., Shabanov V.F. // Opt. Lett. - 2014. - V. 39. - No. 12. - P. 3512-3515. - DOI: 10.1364/OL.39.003512.
Withayachumnankul W., Fischer B.M., Mickan S.P., Abbott D. // Proc. SPIE. - 2008. - V. 6801. - P. 68011G. - DOI: 10.1117/12.758811.
Антонец И.В., Котов Л.Н., Лавров В.Г., Щеглов В.И. // Радиотехника и электроника. - 2008. - Т. 53. - № 4. - С. 389-402.
Sivasamy R.S., Kanagasabai M. // Int. J. RF Microw.Comput. Aided. Engin. - 2019. - V. e2191. - P. 1-4. - DOI: 10.1002/mmce.21691.
Баскаков С.И. Электродинамика и распространение радиоволн. - М.: Книжный дом «ЛИБРОКОМ», 2017. - 416 с.
Семенцов Д.И., Афанасьев С.А., Санников Д.Г. Основы теории распространения электромагнитных волн: учеб. пособие. - Ульяновск: УлГУ, 2012. - 111 с.
Давидович М.В., Стефюк Ю.В. // Изв. вузов. Радиофизика. - 2000. - Т. LIII. - № 1. - С. 31-40.
Банков С.Е. Электродинамика сверхширокополосных антенных решеток. - М.: Изд-во «One book», 2019. - 552 с.
Курушин А.А. // Журнал Радиоэлектроники. - 2010. - № 11. - С. 1-22.
Русов Ю.С., Будкин А.А., Крехтунов В.М. и др. // Вестник МГТУ им. Н.Э. Баумана. Сер. «Приборостроение». - 2012. - С. 172-181.
Курушин А.А., Папилов К.Б. // Современная электроника. - 2014. - № 2. - С. 52-56.
Молчанов С.Ю., Ушаков Н.М., Креницкий А.П., Мещанов В.П. // Изв. вузов. Радиоэлектроника. - 2016. - № 6. - С. 49-52.
Беляев Б.А., Тюрнев В.В., Елисеев А.К. и др. Исследование микрополосковых резонаторов и устройств СВЧ на их основе. Ч. I / Препринт № 415Ф. Институт физики СО РАН. - Красноярск, 1987. - 55 с.
Сазонов Д.М. Антенны и устройства СВЧ. - М.: Высшая школа, 1988. - 432 с.
 Propagation of an electromagnetic wave at an oblique incidence on a plane parallel dielectric plate | Izvestiya vuzov. Fizika. 2023. № 1. DOI: 10.17223/00213411/66/1/36

Propagation of an electromagnetic wave at an oblique incidence on a plane parallel dielectric plate | Izvestiya vuzov. Fizika. 2023. № 1. DOI: 10.17223/00213411/66/1/36