Gallium arsenide with inclusions of ferromagnetic MnAs nanoclusters as a material for spintronics. Part 1
A review of the literature on the magnetic properties of manganese-doped gallium arsenide (GaMnAs) with nanocluster inclusions is presented. Experimental studies have clearly shown that GaMnAs with nanocluster inclusions has ferromagnetic properties with a Curie temperature of 350-360 K, which is significantly higher than that of a dilute GaMnAs magnetic semiconductor containing uniformly distributed manganese atoms. The ferromagnetic properties of such structures are due to the inclusions of InAs nanoclusters in the GaAs matrix. It is shown that GaMnAs with MnAs inclusions is a promising material for the manufacture of spintronics devices.
Keywords
gallium arsenide,
nanoclusters,
magnetic properties,
Curie temperatureAuthors
Khludkov S.S. | National Research Tomsk State University | knludkov@sibmail.com |
Prudaev I.A. | National Research Tomsk State University | funcelab@gmail.com |
Tolbanov O.P. | National Research Tomsk State University | top@mail.tsu.ru |
Ivonin I.V. | National Research Tomsk State University | iiv@phys.tsu.ru |
Всего: 4
References
Prinz A. // Science. - 1990. - V. 250. - P. 1092.
Wolf S.A., Awschalom D.D., Buhrman R.A., et al. // Science. - 2001. - V. 294. - P. 1488.
Katayama-Hoshida H., Sato K., Fukushima T., et al. // Phys. Status Solidi A. - 2007. - V. 204. - P. 3.
Awschalom D.D., Flatte M.E. // Nature Phys. - 2007. - V. 3. - P. 153.
Gould C., Pappert K., Schmidt G., Molenkamp L.W. // Adv. Mater. - 2007. - V. 19. - P. 323.
Zutic I., Fabian J., Das Sarma S. // Rev. Mod. Phys. - 2004. - V. 76. - P. 323.
Dietl T., Ohno H. // Rev. Mod. Phys. - 2014. - V. 86. - P. 187.
Jungwirth T., Wunderlich J., Novák V., et al. // Rev. Mod. Phys. - 2014. - V. 86. - P. 855.
Tanaka M., Ohya S., Pham Nam Hai // Appl. Phys. Rev. - 2014. - V. 1. - P. 011102.
Хлудков С.С., Толбанов О.П., Вилисова М.Д., Прудаев И.А. Полупроводниковые приборы на основе арсенида галлия с глубокими примесными центрами / под ред. О.П. Толбанова. - Томск: Изд-во Том. ун-та, 2016. - 258 с.
Ohno H., Shen A., Matsukura F., et al. // Appl. Phys. Lett. - 1996. - V. 69. - P. 363.
Khazen K., von Bardeleben H.J., Cantin J.L., et al. // Phys. Rev. B. - 2010. - V. 81. - P. 235201.
Liu X., Dobrowolska M., et al. // JMMM. - 2020. - V. 494. - P. 165752.
Al-Shameri N.S., Hassen Dakhlaoui., et al. // Physica B: Cond. Matter. - 2022. - V. 628. - P. 413555. -DOI: 10.1016/j.physb.2021.413555.
Hiroshi Terada, Shinobu Ohya, Masaaki Tanaka // Appl. Phys. Exp. - 2022. - V. 15. - P. 033001.
De Boeck J., Oesterholt R., Van Esch A., et al. // Appl. Phys. Lett. - 1996. - V. 68. - P. 2744.
Shi J., Kikkawa J.M., Proksch R., et al. // Nature. - 1995. - V. 377. - P. 707.
Moreno M., Trampert A., Jenichen B., et al. //j. Appl. Phys. - 2002. - V. 92. - P. 4672.
Yokoyama M., Yamaguchi H., Ogawa T., et al. //j. Appl. Phys. - 2005. - V. 97. - P.10D317.
Tanaka M. //j. Cryst. Growth. - 2005. - V. 278. - P. 25.
Dietl T. // Nature Mater. - 2010. - V. 9. - P. 965.
Kuroda S., Nishizawa N., Takita K., et al. // Nature Mater. - 2007. - V. 6. - P. 440.
Elm M. T., Hara S. // Adv. Mater. - 2014. - V. 26. - P. 8079.
Dietl T., Sato K., Fukushima T., et al. // Rev. Mod. Phys. - 2015. - V. 87. - P. 1311.
Kittilstved K.R., Liu W.K., Gamelin D.R. // Nature Mater. - 2006. - V. 5. - P. 291.
Van Esch A., Van Bockstal L., Boeck J.De, et al. // Phys. Rev. B. - 1997. - V. 56. - P. 13103.
Mack S., Myers R.C., Heron J.T., et al. // Appl. Phys. Lett. - 2008. - V. 92. - P. 192502.
Sato K., Katayama-Yoshida H., Dederichs P.H. // Jpn. J. Appl. Phys. - 2005. - V. 44. - P. L948.
Sadowski J., Domagala J.Z., Mathieu R., et al. // Phys. Rev. B. - 2011. - V. 84. - P. 245306.
Pham Nam Hai, Shinsuke Yada, Masaaki Tanaka //j. Appl. Phys. - 2011. - V. 109. - P. 073919.
Shimizu H., Miyamura M., Tanaka M. // Appl. Phys. Lett. - 2001. - V. 78. - P. 15.
Kwiatkowski A., Wasik D., Kamińska M., et al. //j. Appl. Phys. - 2007. - V. 101. - P. 113912.
DiPietro R.S., Johnson H.G., Bennett S.P., et al. // Appl. Phys. Lett. - 2010. - V. 96. - P. 222506.
Rench D.W., Schiffer P., Samarth N. // Phys. Rev. B. - 2011. - V. 84. - P. 094434.
Shi J., Kikkawa J.M., Awschalom D.D., et al. //j. Appl. Phys. - 1996. - V. 79. - P. 5296.
Wellmann P.J., Garcia J.M., Feng J.-L., et al. // Appl. Phys. Lett. - 1997. - V. 71. - P. 2532.
Ando K., Chiba A., Tanoue H. // Appl. Phys. Lett. - 1998. - V. 73. - P. 387.
Chenjia Chen, Ming Cai, Xuezhong Wang, et al. //j. Appl. Phys. - 2000. - V. 87. - P. 5636.
De Boeck J., Oesterholt R., Bender H., et al. // JMMM. - 1996. - V. 156. - P. 148.
Lampalzer M., Nau S., Pietzonka C., et al. //j. Cryst. Growth. - 2004. - V. 272. - P. 772.
Krug von Nidda H.-A., Kurz T., Loidl A., et al. //j. Phys.: Cond. Matter. - 2006. - V. 18. - P. 607.
Звонков Б.Н., Вихрова О.В., Данилов Ю.A. и др. // Опт. журн. - 2008. - T. 75. - C. 56.
Gan’shina E.A., Golik L.L., Kovalev V.I., et al. // Solid State Phenom. - 2012. - V. 190. - P. 562.
Gan’shina E.A, Golik L.L., Kun’kova Z.E., et al. // Solid State Phenom. - 2015. - V. 233-234. - P. 101.
Кунькова З.Э. , Ганьшина Е.А., Голик Л.Л. и др. // ФТП. - 2018. - T. 60. - C. 940.
Heusler F.Z. // Elektrochem. Angew. Phys. Chem. - 1904. - V. 17. - P. 260.
Hilpert S., Dieckmann T. // Ber. Dtsch. Chem. Ges. - 1911. - V. 44. - P. 2378.
Vidal F., Zheng Y., Lounis L., et al. // Phys. Rev. Lett. - 2019. - V. 122. - P. 145702.
Tanaka M., Harbison Bellcore J.P., Park M.C., et al. //j. Appl. Phys. - 1994. - V. 76. - P. 6278.
Tanaka M., Harbison Bellcore J.P., Park M.C., et al. // Appl. Phys. Lett. - 1994. - V. 65. - P. 1964.
Moreno M., Cerdá J.I., Ploog K.H., et al. // Phys. Rev. B. - 2010. - V. 82. - P. 045117.
Haneda S., Kazama N., Yamaguchi Y., et al. //j. Phys. Soc. Jpn. - 1977. - V. 42. - P. 1201.
Guillaud C. //j. Phys. Radium. - 1951. - V. 12. - P. 223.
Willis B.T.M., Rooksby H.P. // Proc. Phys. Soc. London. Sec. B. - 1954. - V. 67. - P. 290.
Wilson R.H., Kasper J.S. // Acta Crystallogr. -1964. - V. 17. - P. 95.
Bean C.P., Rodbell D.S. // Phys. Rev. - 1962. - V. 126. - P. 104.
Sathyanarayana A.T., Awadhesh Mani //j. Alloys Compd. - 2021. - V. 862. - P. 158322.
Song J.H., Cui Y., Ketterson J.B. //j. Appl. Phys. - 2013. - V. 113. - P. C307.
Mocuta C., Bonamy D., Stanescu S., et al. // Sci. Rep. - 2017. - DOI: 10.1038/s41598-017-17251-y.
Maurizio Sacchi, Nicolas Casaretto, Leticia Coelho, et al. //j. Phys. D: Appl. Phys. - 2020. - V. 53. - P. 265005.
Helman C., Camjayi A., Islam E., et al. // Phys. Rev. B. - 2021. - V. 103. - P. 134408.
Das A.K., Pampuch C., Ney A., et al. // Phys. Rev. Lett. - 2003. - V. 91. - P. 087203.
Ma J.L., Wang H.L., Wang X.L., et al. // Phys. Rev. B. - 2018. - V. 97. - P. 064402.
Trassinelli M., Carlsson1 L.B., Cerveral S., et al. // Physica B: Cond. Matter. - 2017. - V. 29. - P. 055001.
Akinaga H., De Boeck J., Borghs G. // Appl. Phys. Lett. - 1998. - V. 72. - P. 3368.
Wang W.Z., Deng J.J., Lu J., et al. // Appl. Phys. Lett. - 2007. - V. 91. - P. 202503.
Wang W.Z., Deng J.J., Lu J., et al. //j. Appl. Phys. - 2009. - V. 105. - P. 053912.
Lawniczak-Jablonska K., Liberal J., Wolska A., et al. // Phys. Status Solidi B. - 2011. - V. 248. - P. 1609.
Kovács A., Sadowski J., Kasama T., et al. //j. Phys. D: Appl. Phys. - 2013. - V. 46. - P. 145309.
Salles B.R., Girard J.C., David C., et al. // Appl. Phys. Lett. - 2012. - V. 100. - P. 203121.
Smakman E.P., Mauger S., Rench D.W., et al. // Appl. Phys. Lett. - 2014. - V. 105. - P. 232405.
Del Rio-de Santiago A., Sánchez-Valdés C.F., Sánchez J.L., et al. // JMMM. - 2019. - V. 475. - P. 715.
Kaleta A., Kret S., Gas K., et al. // Nano Lett. - 2019. - V. 19. - P. 107324.
Moreno M., Trampert A., Däweritz L., et al. // Appl. Surf. Sci. - 2004. - V. 234. - P. 16.
Hayashi T., Tanaka M., Nishinaga T., et al. //j. Cryst. Growth. - 1997. - V. 175-176. - P. 1063.
Moreno M., Kaganer V., Jenichen B., et al. // Phys. Rev. B. - 2005. - V. 72. - P. 115206.
Kovács A., Sadowski J., Kasama T., et al. //j. Appl. Phys. - 2011. - V. 109. - P. 083546.
Sanvito S., Hill H. A. // Phys. Rev. B. - 2000. - V. 62. - P. 15553.
Sanyal B., Bergqvist L., Eriksson O. // Phys. Rev. B. - 2003. - V. 68. - P. 054417.
Gribanov I.F., Zavadskii E.A. // Phys. Status Solidi B. - 1987. - V. 142. - P. 559.
Tae Whan Kim, Hee Chang Jeon, Tae Won Kang, et al. // Appl. Phys. Lett. - 2006. - V. 88. - P. 021915.
Couto O.D.D., Brasil M.J.S., Iikawa F. //Appl. Phys. Lett. - 2005. - V. 86. - P. 071906.
Khalid M., Prucnal S., Liedke M.O., et al. // Mater. Res. Express. - 2014. - V. 1. - P. 026105.
Ганьшина Е.А., Голик Л.Л., Кунькова З.Э. и др. // ФТТ. - 2019. - Т. 61. - С. 465.
Yuldashev S.U., Shon Y., Kwon Y.H., et al. //j. Appl. Phys. - 2001. - V. 90. - P. 3004.
Anupama Chanda, Lenka H.P., Chacko Jacob // Appl. Phys. A. - 2009. - V. 94. - P. 89.
Shengqiang Zhou //j. Phys. D: Appl. Phys. - 2015. - V. 48. - P. 263001.
Ye Yuan, Chi Xu, Rene Hubner, et al. // Phys. Rev. Mat. - 2017. - V. 1. - P. 054401.
Ye Yuan, Mao Wang, Chi Xu1, et al. //j. Phys.: Cond. Matter. - 2018. - V. 30. - P. 095801.
Chi Xu, Mao Wang, Xiaodong Zhang, et al. // Nucl. Instrum. Methods Phys. Res. B. - 2019. - V. 442. - P. 31.