Calculation of dynamic characteristics of a linearized model of the micro-arc oxidation process
The research is devoted to the development of a simulation model of the micro-arc oxidation process. The model makes it possible to accurately determine electrical parameters of the galvanic cell equivalent electrical circuit (resistance and capacity of coating) by parametric identification and use them to reproduce current and voltage waveforms, i.e. to enable a «virtual experiment» without using technological equipment. This approach to modeling makes it possible to reduce the cost of developing the technology for obtaining oxide-ceramic coatings and serves as the basis for creating a digital twin of the micro-arc oxidation process.
Keywords
micro-arc oxidation,
mathematical model,
linearized model,
equivalent electrical circuit of galvanic cell,
parametric identificationAuthors
Semenov Anatoly D. | Penza State University | ad-semenov@mail.ru |
Shkurina Elizaveta D. | Penza State University | elizaveta555elizaveta@gmail.com |
Pecherskaya Ekaterina A. | Penza State University | pea1@list.ru |
Golubkov Pavel E. | Penza State University | golpavpnz@yandex.ru |
Alexandrov Vladimir S. | Penza State University | vsalexrus@gmail.com |
Yakushov Dmitry V. | Penza State University | hammer.fate@yandex.ru |
Всего: 6
References
Sedelnikova M.B., Kashin A.D., Luginin N.A., et al. // Russ. Phys. J. - 2023. - V. 66. - P. 740-748. - DOI: 10.1007/s11182-023-03000-4.
Zuo S., Cheng F., Yang G., et al. // Compos. Part A. Appl. Sci. Manuf. - 2024. - V. 177. - P. 107919. - DOI: 10.1016/j.compositesa.2023.107919.
Xue B., Lin H., Chai G., et al. // J. Mater. Sci. - 2022. - V. 57. - No. 39. - P. 18370-18384. - DOI: 10.1007/s10853-022-07707-6.
Simchen F., Sieber M., Kopp A., Lampke T. // Coatings. - 2020. - V. 10. - No. 7. - P. 628. - DOI: 10.3390/coatings10070628.
Chebodaeva V.V., Bakina O.V., Sharkeev Y.P. // Russ. Phys. J. - 2025. - P. 1-8. - DOI: 10.1007/s11182-025-03395-2.
Арбузова С.С., Бутягин П.И., Большанин А.В. и др. // Изв. вузов. Физика. - 2019. - Т. 62. - № 11. - C. 117-122. - DOI: 10.17223/00213411/62/11/117.
Kuznetsov Y.A., Markov M.A., Krasikov A.V., et al. // Russ. J. Appl. Chem. - 2019. - V. 92. - No. 7. - P. 875-882. - DOI: 10.1134/S1070427219070012.
Hafili F., Chaharmahali R., Babaei K., Fattah-alhosseini A. // Corrosion Commun. - 2021. - V. 3. - P. 62-70. - DOI: 10.1016/j.corcom.2021.09.005.
Mamaev A.I., Mamaeva V.A., Bespalova Y.N. // Tech. Phys. - 2024. - V. 69. - No. 2. - P. 327-335. - DOI: 10.1134/S1063784224010274.
Pecherskaya E.A., Golubkov P.E., Artamonov D.V., et al. // IEEE Trans. Plasma Sci. - 2021. - V. 49. - No. 9. - P. 2613-2617. - DOI: 10.1109/TPS.2021.3091830.
Yuting D., Zhiyang L., Guofeng M. // IOP Conf. Ser.: Mater. Sci. Eng. - 2020. - V. 729. - No. 1. - P. 012055. - DOI: 10.1088/1757-899X/729/1/012055.
Li G., Ma F., Liu P., et al. // J. Alloys.Compd. - 2023. - V. 948. - P. 169773. - DOI: 10.1016/j.jallcom.2023.169773.
Clyne T.W., Troughton S.C. // Int. Mater. Rev. - 2019. - V. 64. - No. 3. - P. 127-162. - DOI: 10.1080/09506608.2018.1466492.
Mamaev A.I., Mamaeva V.A., Bespalova Y.N. // Tech. Phys. - 2024. - V. 69. - No. 6. - P. 1656-1669. - DOI: 10.1134/S1063784224060252.
Yao W., Wu L., Wang J., et al. // JMST. - 2022. - V. 118. - P. 158-180. - DOI: 10.1016/j.jmst.2021.11.053.
Zhang J., Dai W., Wang X., et al. // J. Mater. Res. Technol. - 2023. - V. 23. - P. 4307-4333. - DOI: 10.1016/j.jmrt.2023.02.028.
Shi M., Li H. // Электронная обработка материалов. - 2015. - Т. 51. - № 5. - С. 57-66.
Pecherskaya E.A., Semenov A.D., Golubkov P.E. // Front. Mater. Technol. - 2023. - V. 4. - P. 73-85. - DOI: 10.18323/2782-4039-2023-4-66-7.
Голубков П.Е., Печерская Е.А., Артамонов Д.В. и др. // Изв. вузов. Физика. - 2019. - Т. 62. - № 11. - С. 166-171. - DOI: 10.17223/00213411/62/11/166.
Sastry S. Nonlinear Systems: Analysis, Stability, and Control. - Springer Science & Business Media, 2013. - V. 10.