Electron beam induced transformations of phenol in water in the presence of humic substances
Electron beams of a RADAN-type pulse accelerator with an average energy of 170 keV and a pulsed cathodoluminescence spectrum meter in the range from 350 to 900 nm, as well as the recording of absorption and fluorescence spectra were used to study the transformation of phenol in water in the presence of humic substances. With the help of this beam, cathodoluminescence excitation and radiolysis action on an aqueous solution of phenol were simultaneously carried out. The degree of transformation of the studied substances was determined by analyzing the luminescence and absorption spectra of the irradiated solution. A study of the effect of a pulsed electron beam on an aqueous solution of phenol in the presence of humic substances showed that the efficiency of phenol transformation in the presence of a sample of a mixture of humic and fulvic acids increases by 2.6 times compared to an aqueous solution.
Keywords
phenol,
humic acid,
electron beam,
cathodoluminescence,
transformationAuthors
Tchaikovskaya Olga N. | Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences; Tomsk State University | tchon@phys.tsu.ru |
Bocharnikova Elena N. | Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences; Tomsk State University | bocharnikova.2010@mail.ru |
Solomonov Vladimir I. | Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences | solomonov@iep.uran.ru |
Makarova Anna S. | Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences | anniebubnova@mail.ru |
Spirina Alfiya V. | Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences | rasuleva@iep.uran.ru |
Сhaikovsky Stanislav A. | Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences; P.N. Lebedev Physical Institute of the Russian Academy of Sciences | chaikovsky@iep.uran.ru |
Sokolova Irina V. | Tomsk State University | sokolova@phys.tsu.ru |
Всего: 7
References
Qiu Z., Li C.-J. // Chem. Rev. - 2020. - V. 120. - No. 18. - P. 10454-10515.
Yan J., Meng Q., Shen X., et al. // Sci. Adv. - 2020. - V. 6. - No. 45. - Art. eabd1951.
Харлампович Г.Д., Чуркин Ю.В. Фенолы. - М.: Химия, 1974. - 376 с.
Gu Z., Zhang Z., Ni N., et al. // Environ. Sci. Technol. - 2022. - V. 56. - No. 7. - P. 4356-4366.
Chen C., Wu Z., Zheng S., et al. // Environ. Sci. Technol. - 2020. - V. 54. - No. l3. - P. 8455-8463.
Magdy M., Alarm M.G., El-Etriby H.K. // J. Cleaner Production. - 2021. - V. 291. - Art. 125923.
Samartzis N., Athanasiou M., Dracopoulos V., et al. // Chem. Eng. J. - 2022. - V. 430. - No. 4. - Art. 133179.
Li C.-X., Chen C.-B., Wang Y.-J., et al. // Chem. Eng. J. - 2019. - V. 362. - P. 570-575.
Busca G., Berardinelli S., Resini C., Arrighi L. // J. Hazardous Mater. - 2008. - V. 160. - No. 2-3. - P. 265-288.
Безлепкина Н.П., Чайковская О.Н., Бочарникова Е.Н. и др. // Изв. вузов. Физика. - 2024. - Т. 67. - № 4. - С. 73-83.
Solomonov V.I., Michailov S.G., Lipchak A.I., et al. // Laser Phys. - 2006. - V. 16. - P. 126-129.
Mesyats G.A., Novoselov Yu.N., Filatov I.E. // Tech. Phys. Lett. - 2001. - V. 27. - P. 813-815.
Nguyen T.T., Uthairatanakij A., Srilaong V., et al. // Appl. Biol. Chem. - 2021. - V. 64. - No. 1. - Art. 19.
Villarreal-Lozoya J.E., Lombardini L., Cisneros-Zevallos L. // J. Agric. Food Chem. -2009. - V. 57. - Art. 10732.
Gul M.M., Ahmad K.S. // J. Mater. Sci. - 2022. - V. 57. - Art. 7290.
Elias M.I., Madureira J., Santos P.M.P., et al. // Innovative Food Sci. Emerging Technol. - 2020. - V. 66. - Art. 102487.
Орлов Д.С. // Почвоведение. - 1998. - № 9. - С. 1049-1057.
Русьянова Н.Д. Углехимия: монография. - М.: Наука, 2003. - 317 с.
Майоров Ф.А., Мешалкин Ю.П., Политова Ю.А. // Оптика атмосферы и океана. - 2000. - Т. 13. - № 10. - С. 914.
Другов Ю.С. Мониторинг органических загрязнений природной среды. 500 методик: практическое руководство. - М.: Бином, 2009. - 893 с.
Pikaev А.К., Bludenko А.V., Makarov I.Е., et al. // Radiat. Phys. Сhеm. - 1996. - V. 48. - No. l. - P. 75-80.
Han B., Kim D.K., Pikaev A.K. // IAEA. - 1998. - P. 339-345.
Зыкова М.В. Методология комплексного исследования высокомолекулярных соединений гуминовой природы: дисс. … д-ра фарм. наук / М. В. Зыкова. - Томск, 2018. - 384 с.
Селянина С.Б., Зубов И.Н., Орлов А.С. и др. // Успехи современного естествознания. - 2024. - № 1. - С. 41-46.
Tchaikovskaya O.N., Solomonov V.I., Bocharnikova E.N., et al. // IEEE Trans. Plasma Sci. - 2023. - V. 61. - Art. 2765.
Solomonov V.I., Spirina A.V., Popov M.P., Kaigorodova O.A. // J. Opt. Technol. - 2016. - V. 83. - P. 494-497.
Соколова И.В., Чайковская О.Н. // Оптика атмосферы и океана. - 2006. - Т. 19. - № 2-3. - С. 244-247.
Kulovaara M., Corin N., Backlund P., Tervo J. // Chemosphere. - 1996. - V. 33. - P. 783-790.
Ванцкявичуте Е.П. // Изв. вузов. Физика. - 2005. - Т. 48. - № 6. - С. 71-72.
Uyguner C.S., Bekbolet M. // Catal. Today. - 2005. - V. 101. - No. 3-4. - P. 267-274.
Traina S.J., Novak J., Smeck N.E. // J. Environ. Quality. - 1990. - V. 19. - No. 1. - P. 151-153.
O'Loughlin E., Chin Y.-P. // Water Res. - 2001. - V. 35. - No. 1. - P. 333-338.
Chin Y.P., Aiken G., O’Loughlin E. // Environ. Sci. Technol. - 1994. - V. 28. - No. 11. - P. 1853-1858.
Peuravuori J., Pihlaja K. // Anal. Chimica Acta. - 1997. - V. 337. - No. 2. - P. 133-149.
Lipski M., Stawinski J., Zych D. // J. Fluorescence. - 1999. - V. 9. - P. 133-138.
Соколова И.В., Чайковская О.Н. // Вестник ТГПУ. - 2008. - T. 4. - № 78. - C. 42-46.
Canonica S., Jans U., Stemmler K., Hoigne J. // Environ. Sci. Technol. - 1995. - V. 29. - No. 7. - P. 1822-1831.
Canonica S., Freiburghaus M. // Environ. Sci. Technol. - 2001. - V. 35. - No. 4. - P. 690-695.
Halladja S., Ter Halle A., Aguer J.-P., et al. // Environ. Sci. Technol. - 2007. - V. 41. - No. 17. - Art. 6066.