Effect of dendritic liquation on phase composition and deformation mechanisms of a multicomponent Fe40Mn40Co10Cr10 alloy
The microstructure of Fe40Mn40Co10Cr10 alloy in the cast state, after plastic deformation, and recrystallization annealing at temperatures of 1373 and 1473 K has been studied. It is shown that the cast alloy has a dendritic microstructure, and, in addition to the main γ-phase (with FCC crystal lattice), a cooling ε-martensite (with HCP crystal lattice) is formed in the dendritic regions. Dendritic liquation also prevents deformational γ→ε transformation in the interdendritic regions. It is established that plastic deformation and annealing make it possible to obtain in the alloy an austenitic structure with homogeneous chemical composition.
Keywords
multicomponent alloys,
phase transformations,
austenite,
martensite,
microstructureAuthors
Luchin Andrey V. | Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences | luchin250398@yandex.ru |
Gurtova Darya Yu. | Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences; Tomsk State University | dasha_gurtova@mail.ru |
Astafurova Elena G. | Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences | elena.g.astafurova@ispms.ru |
Всего: 3
References
Cantor B. // Prog. Mater. Sci. - 2021. - V. 120. - Art. 100754. - DOI: 10.1016/j.pmatsci.2020.100754.
Cantor B. // J. Mater. Sci. - 2024. - P. 1-15. - DOI: 10.1007/s10853-024-10385-1.
Реунова К.А., Астафуров С.В., Астафурова Е.Г. // Изв. вузов. Физика. - 2022. - Т. 65. - № 2. - С. 111-120. - DOI: 10.17223/00213411/65/2/111.
Miracle D.B., Senkov O.N. // Acta Mater. - 2017. - V. 122. - P. 448-511. - DOI: 10.1016/j.actamat.2016.08.081.
Okamoto N.L., Fujimoto S., Kambara Y., et al. // Sci. Rep. - 2016. - V. 6. - Art. 35863. - DOI: 10.1038/srep35863.
Laplanche G., Kostka A., Horst O.M., et al. // Acta Mater. - 2016. - V. 118. - P. 152-163. - DOI: 10.1016/j.actamat.2016.07.038.
Wagner C., Laplanche G. // Acta Mater. - 2023. - V. 244. - Art. 118541. - DOI: 10.1016/j.actamat.2022.118541.
Gludovatz B., Ritchie R.O. // MRS Bull. - 2022. - V. 47. - P. 176-185. - DOI: 10.1557/s43577-022-00267-9.
Wei D., Li X., Jiang J., et al. // Scripta Mater. - 2019. - V. 165. - P. 39-43. - DOI: 10.1016/j.scriptamat.2019.02.018.
Chandan A.K., Tripathy S., Ghosh M., et al. // Metall. Mater. Trans. A. - 2019. - V. 50. - P. 5079-5090. - DOI: 10.1007/s11661-019-05438-z.
Chen J., Jiang X., Sun H., et al. // Nanotechnol. Rev. - 2021. - V. 10. - No. 1. - P. 1116-1139. - DOI: 10.1515/ntrev-2021-0071.
Singh P., Picak S., Sharma A., et al. // Phys. Rev. Lett. - 2021. - V. 127. - Art. 115704. - DOI: 10.1103/PhysRevLett.127.115704.
Chandan A.K., Tripathy S., Sen B., et al. // Scripta Mater. - 2021. - V. 199. - Art. 113891. - DOI: 10.1016/j.scriptamat.2021.113891.
Kim J.K., Kim J.H., Park H., et al. // Int. J. Plasticity. - 2022. - V. 148. - Art. 103148. - DOI: 10.1016/j.ijplas.2021.103148.
Deng Y., Tasan C.C., Pradeep K.G., et al. // Acta Mater. - 2015. - V. 94. - P. 124-133. - DOI: 10.1016/j.actamat.2015.04.014.
Laurent-Brocq M., Akhatova A., Perrière L., et al. // Acta Mater. - 2015. - V. 88. - P. 355-365. - DOI: 10.1016/j.actamat.2015.01.068.
Schwartz A.J., Kumar M., Adams B.L., et al. // Electron Backscatter Diffraction in Materials Science. - 2nd ed. -N.Y.: Springer, 2009. - DOI: 0.1007/978-0-387-88136-2.
Wagner C., Ferrari A., Schreuer J., et al. // Acta Matera. - 2022. - V. 227. - Art. 117693. - DOI: 10.1016/j.actamat.2022.117693.
Васильев А.Д. // Вестник Сам. гос. техн. унта. Сер. Физ.-мат. науки. - 1996. - № 4. - С. 131-138. - DOI: 10.14498/vsgtu245.
Muñoz J.A., Bolmaro R.E., Jorge A.M., et al. // Metall. Mater. Trans. A. - 2020. - V. 51. - P. 4674-4684. - DOI: 10.1007/s11661-020-05873-3.