Internal stresses and their sources in technically pure UFG copper after severe plastic deformation | Izvestiya vuzov. Fizika. 2025. № 8. DOI: 10.17223/00213411/68/8/7

Internal stresses and their sources in technically pure UFG copper after severe plastic deformation

The grain structure of internal stresses and their sources in technically pure ultrafine-grained copper obtained under conditions of severe plastic deformation by high-pressure torsion has been studied by transmission diffraction electron microscopy. It is established that severe plastic deformation by high-pressure torsion led to the formation of secondary phase particles in ultrafine-grained copper, possessing nanometric size and localized inside, on the boundaries, and in the joints of grains. The sources of internal stresses are revealed and their amplitude is determined. It was found that the sources of internal stresses are: grain junctions, in which secondary phase particles are present or absent; grain boundaries, free of secondary phase particles; particles located on dislocations inside the grains, and, finally, dislocation structure. It is found that internal stresses from all sources cover all grains irrespective of their internal structure and are predominantly elastic in nature.

Download file
Counter downloads: 1

Keywords

severe plastic deformation by torsion under high pressure, ultrafine grained copper, grain, grain junction, particle, lattice curvature-torsion, volume fraction, internal stresses

Authors

NameOrganizationE-mail
Popova Nataliya A.Tomsk State University of Architecture and Buildingnatalya-popova-44@mail.ru
Nikonenko Elena L.Tomsk State University of Architecture and Buildingvilatomsk@mail.ru
Solov’eva Yulia V.Tomsk State University of Architecture and Buildingj_sol@mail.ru
Starenchenko Vladimir A.Tomsk State University of Architecture and Buildingstar@tsuab.ru
Всего: 4

References

Валиев Р.З., Жиляев А.П., Лэнгдон Т.Дж. Объемные наноструктурные материалы: фундаментальные основы и применение. - СПб.: Эко-Вектор, 2017. - 479 с.
Faraji G, Torabzadeh H. // Mater. Trans. - 2019. - V. 60. - No. 7. - P. 1316-1330. - DOI: 10.2320/matertrans.MF201905.
Valiev R.Z., Parfenov E.V., Parfenova L.V. // Mater. Trans. - 2019. - V. 60. - No. 7. - P. 1356-1366. - DOI: 10.2320/matertrans.MF201943.
Valiev R.Z., Straumal B., Langdon T.G. // Annu. Rev. Mater. Res. - 2022. - V. 52. - P. 357-382. - DOI: 10.1146/annurev-matsci-081720-123248.
Edalati K., Bachmaier A., Beloshenko V.A., et al. // Mater. Res. Lett. - 2022. - V. 10. - No. 4. - Р. 163-256. - DOI: 10.1080/21663831.2022.2029779.
Fattahi M., Hsu Ch.-Yi, Ali A.O., et al. // Heliyon. - 2023. - V. 9. - No. 1. - P. е22559. - DOI: 10.1016/j.heliyon.2023.e22559.
Majerič P. // Metallurg. Mater. Data. - 2024. - V. 2. - No. 1. - P. 15-22. - DOI: 10.56801/ MMD20.
Masuda T., Horita Z. // Mater. Trans. - 2019. - V. 60. - No. 7. - P. 1104-1110. - DOI: 10.2320/matertrans.M201942.
Blank V.D., Popov M.Yu., Kulnitskiy B.A. // Mater. Trans. - 2019. - V. 60. - No. 8. - P. 1500-1505. - DOI: 10.2320/matertrans.MF201942.
Horita Z., Tang Y., Masuda T., Takizawa Y. // Mater. Trans. - 2020. - V. 61. - No. 7. - P. 1177-1190. - DOI: 10.2320/matertrans.MT-M2020074.
Macháčková A. // Materials. - 2020. - V. 13. - No. 7. - P. 1725. - DOI: 10.3390/ma13071725.
Рыбин В.В. Большие пластические деформации. - М.: Металлургия, 1986. - 224 с.
Morris D.G., Morris M.A. // Acta Met. - 1991. - V. 39. - No. 8. - P. 1763-1770.
Masuda T., Sauvage X., Hirosawa S., Horita Z. // Mater. Sci. Eng.: A. - 2020. - V. 793. - P. 139668. - DOI: 10.1016/j.msea.2020.139668.
Попова Н.А., Никоненко Е.Л., Соловьева Ю.В., Старенченко В.А. // Изв. вузов. Физика. - 2022. - Т. 65. - № 9. - С. 20-26. - DOI: 10.17223/00213411/65/9/20.
Попова Н.А., Никоненко Е.Л., Соловьева Ю.В., Старенченко В.А. // Изв. вузов. Физика. - 2024. - Т. 67. - № 12. - С. 201-208. - DOI: 10.17223/00213411/67/12/25.
Кардашев Б.К., Нарыкова М.В., Бетехтин В.И., Кадомцев А.Г. // Физич. мезомех. - 2019. - Т. 22. - № 3. - С. 71-76. - DOI: 10.24411/1683-805X-2019-13008.
Chakraborty J., Oellers T., Raghavan R., et al. // J. Alloys Compd. - 2022. - V. 896. - P. 162799. - DOI: 10.1016/j.jallcom.2021.162799.
Попова Н.А., Громов В.Е., Никоненко Е.Л. и др. Механизмы упрочнения в металлах и сплавах: учеб. пособие. - Новокузнецк: Полиграфист, 2024. - 133 с.
Козлов Э.В., Старенченко В.А., Конева Н.А. // Металлы. - 1993. - № 5. - С. 152-161.
 Internal stresses and their sources in technically pure UFG copper after severe plastic deformation | Izvestiya vuzov. Fizika. 2025. № 8. DOI: 10.17223/00213411/68/8/7

Internal stresses and their sources in technically pure UFG copper after severe plastic deformation | Izvestiya vuzov. Fizika. 2025. № 8. DOI: 10.17223/00213411/68/8/7

Download full-text version
Counter downloads: 122