Diode laser system for remote sensing of carbon dioxide in the atmosphere
The need to monitor anthropogenic pollution of the atmosphere determines the development of technical means of remote sensing in urban agglomerations, near private industrial enterprises and highways. Carbon dioxide (CO2) at current values is considered one of the main gas components of the atmosphere, contributing to the greenhouse effect and the ecological situation in places of residence. To solve the problem of sensing CO2 in concentrations from the background (440 ppm) to maximum permissible (MPC - 4917 ppm), a diode laser system tunable in the CO2 absorption band of ~ 1572 nm was developed. Numerical modeling of the absorption spectra of the atmosphere in the studied spectral range was carried out, which made it possible to estimate the effect and contribution of interfering absorption by foreign gases in CO2 sensing. Calibration of the laser diode wavelength position using a high-precision meter at different temperatures and current consumption made it possible to adjust the laser generation range with the overlap of the isolated CO2 absorption line. Based on the obtained results, a version of the technical implementation of the system was developed, experiments were conducted to record transmission spectra using a gas cuvette, and lidar signals were recorded.
Keywords
tunable diode laser absorption spectroscopy,
carbon dioxide,
absorption line,
remote sensingAuthors
| Gerasimova Marianna P. | V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences | gmp@iao.ru |
| Sadovnikov Sergey A. | V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences | sadsa@iao.ru |
| Yakovlev Semyon V. | V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences | ysv@iao.ru |
| Kryuchkov Alexander V. | V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences | kaw@iao.ru |
| Filatov Viktor V. | V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences | fvv@iao.ru |
| Kravtsova Natalya S. | V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences | kravtsova@iao.ru |
| Markova Anna A. | V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences | aam160@iao.ru |
| Kistenev Yury V. | Tomsk State University | yuk@iao.ru |
| Romanovskii Oleg A. | V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences | roa@iao.ru |
Всего: 9
References
Li J., Yu Z., Du Z., et al. // Remote Sens. - 2020. - V. 12. - P. 2771. - DOI: 10.3390/rs12172771.
Кистенев Ю.В., Cuisset A., Романовский О.А., Жердева А.В. // Оптика атмосферы и океана. - 2022. - Т. 35. - № 10. - С. 799-810. - DOI: 10.15372/AOO20221002.
Yakovlev S., Sadovnikov S., Kharchenko O., Kravtsova N. // Atmosphere. - 2020. - V. 11. - P. 70. - DOI: 10.3390/atmos11010070.
Refaat T.F., Petros M., Antill C.W., et al. // Atmosphere. - 2021. - V. 12. - P. 412. - DOI: 10.3390/atmos12030412.
Yue B., Yu S., Li M., et al. // Remote Sens. - 2022. - V. 14. - P. 5150. - DOI: 10.3390/rs14205150.
Innocenti F., Gardiner T., Robinson R. // Remote Sens. - 2022. - V. 14. - P. 4291. - DOI: 10.3390/rs14174291.
Yakovlev S.V., Sadovnikov S.A., Romanovskii O.A. // Remote Sens. - 2022. - V. 14. - P. 6355. - DOI: 10.3390/rs14246355.
Садовников С.А., Романовский О.А., Яковлев С.В. и др. // Опт. журн. - 2022. - T. 89. - № 6. - С. 15-24. - DOI: 10.17586/1023-5086-2022-89-06-15-24.
Stroud J.R., Dienstfrey W.J., Plusquellic D.F. // Remote Sens. - 2023. - V. 15. - P. 4283. - DOI: 10.3390/rs15174283.
Stroud J.R., Wagner G.A., Plusquellic D.F. // Remote Sens. - 2023. - V. 15. - P. 5595. - DOI: 10.3390/rs15235595.
Wagner G.A., Plusquellic D.F. // Appl. Opt. - 2016. - V. 55. - P. 6292-6310. - DOI: 10.1364/AO.55.006292.
Yang H., Bu X., Song Y., Shen Y. // Measurement. - 2022. - V. 204. - P. 112091. - DOI: 10.1016/j.measurement.2022.112091.
Stachowiak D., Jaworski P., Krzaczek P., et al. // Sensors. - 2018. - V. 18. - P. 529. - DOI: 10.3390/s18020529.
Lu H., Zheng C., Zhang L., et al. // Sensors. - 2021. - V. 21. - P. 2448. - DOI: 10.3390/s21072448.
Siozos P., Psyllakis G., Samartzis P.C., Velegrakis M. // Remote Sens. - 2022. - V. 14. - P. 460. - DOI: 10.3390/rs14030460.
Feng Y., Chang J., Chen X., et al. // Opt. Quant. Electron. - 2021. - V. 53. - P. 195. - DOI: 10.1007/s11082-021-02844-9.
Gao G., Zhang T., Zhang G., et al. // Opt. Express. - 2019. - V. 27. - P. 17887-17904. - DOI: 10.1364/OE.27.017887.
Liang W., Wei G., He A., Shen H. // Infrared Phys. Technol. - 2021. - V. 114. - P. 103661. - DOI: 10.1016/j.infrared.2021.103661.
Kwany M., Bombalska A. // Sensors. - 2023. - V. 23. - P. 2834. - DOI: 10.3390/s23052834.
Cui P., Chen J., Zhou Ch., et al. // Infrared Phys. Technol. - 2025. - V. 145. - P. 105741. - DOI: 10.1016/j.infrared.2025.105741.
Zhang L., Dai X., Zhang W., et al. // Opt.Commun. - 2025. - V. 574. - P. 131211. - DOI: 10.1016/j.optcom.2024.131211.
Shi Y., Hu Z., Niu M., et al. // Sensors and Actuators B: Chemical. - 2024. - V. 412. - P. 135829. - DOI: 10.1016/j.snb.2024.135829.
Liu Y., Sun X., Sun H., et al. // Infrared Phys. Technol. - 2024. - V. 141. - P. 105484. - DOI: 10.1016/j.infrared.2024.105484.
STEMlab. - URL: https://redpitaya.com/(дата обращения: 20 мая 2025).
LasersCom. - URL: https://laserscom.com/en (дата обращения: 20 мая 2025).
Thorlabs Inc. - URL: https://www.thorlabs.com/(дата обращения: 20 мая 2025).
Wavelength References. - URL: https://www.wavelengthreferences.com/(дата обращения: 20 мая 2025).
Sky-Watcher. - URL: https://sky-watcher-russia.ru/(дата обращения: 20 мая 2025).
Gordon I., Rothman L., Hargreaves R., et al. // J. Quant. Spectrosc. Rad. Transfer. - 2022. - V. 277. - P. 107949. - DOI: 10.1016/j.jqsrt.2021.107949.
Wavelength meter «Angstrom». - URL: https://www.highfinesse.com/(дата обращения: 20 мая 2025).