Pattern formation in the nonlocal one-dimensional Fisher–Kolmogorov–Petrovskii–Piskunov model with fractional Laplacian | Izvestiya vuzov. Fizika. 2025. № 9. DOI: 10.17223/00213411/68/9/1

Pattern formation in the nonlocal one-dimensional Fisher–Kolmogorov–Petrovskii–Piskunov model with fractional Laplacian

The dynamics of population density is studied within the framework of a generalized one-dimensional Fisher-Kolmogorov-Petrovskii-Piskunov model with nonlocal competitive losses and a fractional Laplace operator describing anomalous diffusion. Numerical solutions are obtained for selected parameter values considering two forms of the fractional Laplacian: the regional fractional Laplace operator and the Caputo-Fabrizio fractional Laplace operator. The simulations reveal that during the evolution of an initially localized population density distribution, spatially non-uniform patterns emerge in the form of local maxima. These maxima can be interpreted as dissipative structures. The impact of the fractional Laplacian parameter on the emergence and characteristics of these structures is also analyzed.

Keywords

population dynamics, anomalous diffusion, fractional laplacian, Fisher-Kolmogorov-Petrovskii-Piskunov equation, pattern formation

Authors

NameOrganizationE-mail
Siniukov Sergey A.Tomsk State Universityssaykmh@yandex.ru
Shapovalov Alexander V.Tomsk State Universityshpv@mail.tsu.ru
Всего: 2

References

Murray J.D. Mathematical Biology. I. An Introduction. - N.Y.: Springer, NY, 2002. - 551 p.
Ахромеева Т.С., Курдюмов С.П., Малинецкий Г.Г., Самарский А.А. Структуры и хаос в нелинейных средах. - М.: Физматлит, 2007. - 488 с.
Ванаг В.К. Диссипативные структуры в реакционно-диффузионных системах: эксперимент и теория. - Москва; Ижевск: Институт компьютерных исследований: Регулярная и хаотическая динамика, 2008. - 299 с.
Fuentes M.A., Kuperman M.N., Kenkre V.M. // Phys. Rev. Lett. - 2003. - V. 91. - No. 158104. - P. 158104_1-158104_4. - DOI: 10.1103/PhysRevLett.91.158104.
Борисов А.В., Резаев Р.О., Трифонов А.Ю., Шаповалов А.В. // Известия Томского политехнического университета. - 2009. - Т. 315. - № 2. - С. 24-28.
Banerjee M., Kuznetsov M., Udovenko O., Volpert V. // Acta Biotheor. - 2022. - V. 70. - No. 2. - P. 1-23. - DOI: 10.1007/s10441-022-09436-4.
Учайкин В.В. Метод дробных производных. - Ульяновск: Артишок, 2008. - 510 с.
Тарасов В.Е. Модели теоретической физики с интегродифференцированием дробного порядка. - М.: URSS, 2011. - 568 с.
Синюков С.А., Кулагин А.Е., Шаповалов А.В. // Изв. вузов. Физика. - 2024. - Т. 67. - № 8. - С. 5-14. - DOI: 10.17223/00213411/67/8/1.
Maha Daoud, El Haj Laamri. // Discrete and Continuous Dynamical Systems - S. - 2022. - V. 15. - No. 1. - P. 95-116. - DOI: 10.3934/dcdss.2021027.
Caputo M., Fabrizio M. // Progr. Fract. Differ. Appl. - 2015. - V. 1. - No. 2. - P. 73-85. - DOI: 10.12785/pfda/010201.
Huang Y., Oberman A. // SIAM J. Numerical Anal. - 2014. - V. 52. - № 6. - P. 3056-3084. - DOI: 10.1137/140954040.
 Pattern formation in the nonlocal one-dimensional Fisher–Kolmogorov–Petrovskii–Piskunov model with fractional Laplacian | Izvestiya vuzov. Fizika. 2025. № 9. DOI: 10.17223/00213411/68/9/1

Pattern formation in the nonlocal one-dimensional Fisher–Kolmogorov–Petrovskii–Piskunov model with fractional Laplacian | Izvestiya vuzov. Fizika. 2025. № 9. DOI: 10.17223/00213411/68/9/1

Download full-text version
Counter downloads: 85