2D-model of glow discharge plasma in the atmospheric pressure helium formed after spark breakdown: calculating electrophysical and thermodynamic parameters
In this paper, the method of finite difference elements has been used to calculate the dynamics of electrophysical and thermodynamic characteristics of the helium plasma at atmospheric pressure after a spark breakdown of 1 mm of the gas-discharge gap. In calculations, a 2D-axially symmetric model of plasma in the drift-diffusion approximation was employed in combination with the Navier-Stokes equations and thermal conductivity. The selected parameters of the electric circuit, initial and boundary conditions of the discharge lead to the formation of an independent stationary discharge of direct current ~0.1A and temperature ~500K localised in the finite volume. A comparative analysis of the effect of plasma heating on the dynamics of its electrophysical characteristics and the type of discharge was carried out.
Keywords
плазма атмосферного давления,
тлеющий разряд,
численное моделирование плазмы,
самосогласованная столкновительная модель,
биомедицинские приложения,
atmospheric pressure plasma,
glow discharge,
plasma numerical simulation,
self-consistent collisional model,
biomedical applicationsAuthors
Demkin V.P. | National Research Tomsk State University | demkin@ido.tsu.ru |
Melnichuk S.V. | National Research Tomsk State University | osbereg@yandex.ru |
Postnikov A.V. | National Research Tomsk State University | postnikov_a_v@list.ru |
Всего: 3
References
Laroussi M. // Plasma. - 2018. - V. 1. - No. 1. - P. 47-60.
Dubuc A., Monsarrat P., Virard F., et al. // Therapeutic Advances in Medical Oncology: Systematic Review. - 2018. - V. 10. - P. 1-12.
Gay-Mimbrera J., Carmen Garcı´a M., Isla-Tejera B., et al. // Adv. Therapy. - 2016. - V. 33. - P. 894-909.
Heinlin J., Isbary G., Stolz W., et al. // J. Eur. Academy of Dermatology and Venereology. - 2011. - V. 25. - P. 1-11.
Dobrynin D., Wasko K., Friedman G., et al. // Plasma Medicine. - 2011. - V. 1. - P. 241-247.
Li H.-P., Zhang X.-F., Zhu X.-M., et al. // High Volt. - 2017. - V. 2. - No. 3. - P. 188-199.
O’Connor N., Cahill O., Daniels S., et al. // J. Hospital Infection. - 2014. - V. 88. - P. 59-65.
Chatraie M., Torkaman G., Khani M., et al. // Sci. Rep. - 2018. - V. 8. - No. 5621. - P. 1-11.
Isbary G., Shimizu T., Li Y-F., et al. // Expert Rev. Med. Devices. - 2013. - V. 10. - No. 3. - P. 367-377.
Laroussi M. // IEEE Trans. Plasma Sci. - 2009. - V. 37. - No. 6. - P. 714-725.
Yan W. and Economou D.J. // J. Phys. D: Appl. Phys. - 2017. - V. 50. - No. 415205. - P. 1-13.
Cheng H., Liu X., Lu X., et al. // High Voltage. - 2016. - V. 1. - No. 2. - P. 62-73.
Graves D.B. // Phys. Plasmas. - 2014. - V. 21. - P. 080901.
Demkin V.P., Melnichuk S.V., Demkin O.V., et al. // Phys. Plasmas. - 2016. - V. 23. - P. 043509.
Laroussi M., Lu X., and Keidar M. // J. Appl. Phys. - 2017. - V. 122. - P. 020901.
Korolev Y.D., Frants O.B., Landl N.V., et al. // IEEE Trans. Plasma Sci. - 2012. - V. 40. - No. 11. - P. 2837-2842.
Korolev Y.D., Frants O.B., Landl N.V., et al. // IEEE Trans. Plasma Sci. -2009. - V. 37. - No. 4. - P. 586-592.
Korolev Y.D. // Russ. J. General Chem. - 2015. - V. 85. - No. 5. - P. 1311-1325.
Demkin V.P., Melnichuk S.V., and Postnikov A.V. // Phys. Plasmas. - 2018. - V. 25. - P. 083502.
Liu D.X., Bruggeman P., Iza F., et al. // Plasma Sources Sci. Technol. - 2010. - V. 19. - P. 025018.
Демкин В.П., Мельничук С.В. // Изв. вузов. Физика. - 2017. - Т. 60. - № 2. - С. 123-128.