Photochromic quantum dots
The analysis of the results of fundamental and applied research in the field of creation of photochromic nanoparticles of the "core-shell" type, in which semiconductor nanocrystals - quantum dots were used as a core, and the shell included physically or chemically sorbed molecules of photochromic thermally relaxing (spiropyrans, spirooxazines , chromenes, azo compounds) or thermally irreversible (diarylethenes, fulgimides) compounds. It has been shown that such nanoparticles provide reversible modulation of the QD radiation intensity, which can be used in information and biomedical technologies.
Keywords
photochromism,
quantum dots,
nanocrystals,
fluorescence,
spiro compounds,
diarylethenes,
chromenes,
azo compounds,
fulgimidesAuthors
Barachevsky V.A. | Photochemistry Center FSRC "Crystallography and Photonics" of the Russian Academy of Sciences; Interdepartmental Center of Analytical Researches in the field of physics, chemistry and biology at the Presidium of the Russian Academy of Sciences | barachevsky@mail.ru |
Всего: 1
References
Разумов В.Ф. Фотоника коллоидных квантовых точек. - Иваново: Ивановский гос. университет, 2017. - 269 с.
Reshma V.G., Mohanan P.V. // J. Lumin. - 2019. - V. 205. - P. 287-298. - DOI: 10.1016/j.jlumin. 2018.09.015.
Tian Z., Wu W., Li A.D.Q. // Chem. Phys. Chem. - 2009. - V. 10(15). - P. 2577-2591. - DOI: 10.1002/cphc. 200900492.
Barachevsky V.A. // Org. Photonics. Photovolt. - 2015. - V. 3. - P. 8-41. - DOI: 10.1515/oph-2015-0003.
Sansalone L., Tang S., Zhang Y., et al. // Topics in Curr. Chem. - 2016. - V. 374(5). - P. 73. - DOI: 10.1007/s41061-016-0073-8.
Photochromic Materials: Preparation, Properties and Applications / eds. H. Tian, J. Zhang. - Weinheim, Germany: Wiley-VCH Verlag GmbH & Co., 2016. - 421 p.
Medintz I.L., Trammell S.A., Mattoussi H., et al. // J. Amer. Chem. Soc. - 2002. - V. 126(1). - P. 30-31. - DOI: 10.1021/ja037970h.
Lakowicz J.R. Principles of Fluorescence Spectroscopy. - 2nd ed. - N.Y.: Kluwer Academic, 1999. - 490 p.
Zhu L., Zhu M.-Q., Hurst J.K., et al. // Fluorescence. J. Am. Chem. Soc. - 2005. - V. 127(25). - P. 8968-8970. - DOI: 10.1021/ja0423421.
Lamri G., Movsesyan A., Figueiras E., et al. // Nanoscale. - 2019. - V. 11. - P. 258-265. - DOI: 10.1039/c8nr08076c.
Emin S.M., Sogoshi N., Nakabayashi S., et al. // J. Phys. Chem. C. - 2009. - V. 113(10). - P. 3998-4007. - DOI: 10.1021/jp809797.
Soumya S., Sheemol V.N., Amba P., et al. // Solar Energy Mater. Solar Cells. - 2018. - V. 174. - P. 554-565. - DOI: 10.1016/j.solmat.2017.09.05.
Saito M., Takahashi Y., Matsuda K., et al. // Proc. SPIE. - 2008. - V. 7142. - P. 714208-714213. - DOI: 10.1117/12.815272.
Tomasulo M., YildIz I., Raymo F.M. // Austr. J. Chem. - 2006. - V. 59(3). - P. 175-178. - DOI: 10.1071/ch05332.
Chen Z., Zhou L., Bing W., et al. // J. Amer. Chem. Soc. - 2014. - V. 136(20). - P. 7498-7504. - DOI: 10.1021/ja503123m.
Liu C., Zhang Y., Liu M., et al. // Biomater. - 2014. - V. 139. - P. 151-162. - DOI: 10.1016/j.biomaterials. 2017.06.008.
Lee E.-M., Gwon S.-Y., Son Y.-A., et al. // Spectrochim. Acta. A. - 2012. - V. 97. - P. 806-810.- DOI: 10.1016/j.saa.2012.07.074.
Barachevsky V., Venidiktova O.V., Valova T.M., et al. // Photochem. Photobiol. Sci. - 2019. - V. 18. - P. 2661-2665. - DOI: 10.1039/c9pp00341j.
Saeed S., Channar P.A., Saeed A., et al. // J. Photochem. Photobiol. A. - 2019. - V. 369 (2). - P. 159-165. - DOI: 10.1016/j.jphotochem.2018.09.035.
Wu W., Yao L., Yang T., et al. // J. Am. Chem. Soc. - 2011. - V. 133(40). - P. 15810-15813. - DOI: 10.1021/ja2043276.
Jares-ErIjman E., Giordano L., Spagnuolo C., et al. // Molec. Cryst. Liq. Cryst. - 2005. - V. 430(1). - P. 257-265. - DOI: 10.1080/15421400590946479.
Erno Z., Yildiz I., Gorodetsky B., et al. // Photochem. Photobiol. Sci. - 2010. - V. 9(2). - P. 249-253. - DOI: 10.1039/b9pp00115h.
Díaz S.A., Menéndez G.O., Etchehon M.H., et al. // ACS Nano. - 2011. - V. 5(4). - P. 2795-2805. - DOI: 10.1021/nn103243c.
Díaz S.A., Giordano L., Jovin T.M., et al. // Nano Lett. - 2012. - V. 12(7). - P. 3537-3544. - DOI: 10.1021/nl301093s.
Díaz S.A., Giordano L., Azcárate J.C., et al. // J. Am. Chem. Soc. - 2013. - V. 135(8). - P. 3208-3217. - DOI: 10.1021/ja3117813.
Díaz S.A., Gillanders F., Jares-Erijman E.A., et al. // Nature Commun. - 2015. - V. 6(1). - P. 6036-1-11. - DOI: 10.1038/ncomms7036.
Díaz S.A., Gillanders F., SusumuK., et al. // Chem. A Eur. J. - 2016. - V. 23(2). - P. 263-267. - DOI: 10.1002/chem.201604688.
Dworak L., Reuss A.J., Zastrow M., et al. // Nanoscale. - 2014. - V. 6(23). - P. 14200-14203. - DOI: 10.1039/c4nr05144k.
Seto Y., Yamada R., Kitagawa D., et al. // Chem. Lett. - 2019. - V. 48(11). - P. 1394-1397. - DOI: 10.1246/cl.190634.
Yano N., Yamauchi M., Kitagawa D., et al. // J. Phys. Chem. C. - 2020. - V. 124(31). - P. 17423-17429. - DOI: 10.1021/acs.jpcc.0c05030.
Барачевский В.А., Кобелева О.И., Венидиктова О.В. и др. // Кристаллография. - 2019. - Т. 64. - № 4. - С. 820-824.
Karpach P.V., Scherbovich A.A., Vasilyuk G.T., et al. // J. Fluoresc. - 2019. - V. 29. - P. 1311-1320. - DOI: 10.1007/s10895-019-02455-4.
Scherbovich A.A., Maskevich S.A., Karpach P.V., et al. // J. Phys. Chem. C. - 2020. - V. 124 (49). - P. 27064-27070. - DOI: 10.1021/acs.jpcc.0c06651.
Барачевский В.А. // Кристаллография. - 2019. - Т. 63(2). - С. 293-297.
Jiang G., Jia Y., Cui S., et al. // Chem. Select. - 2020. - V. 5(44). - P. 13919-13924. - DOI: 10.1002/slct. 202002973.
Akaishi Y., Pramata A.D., Tominaga S., et al. // Chem. Commun. - 2019. - V. 55. - P. 8060-8063. - DOI: 10.1039/c9cc03797g.
Min Yeo K., Ji Gao C., Ahn K.-H., et al. // Chem. Commun. - 2008. - V. 38. - P. 4622-4624. - DOI: 10.1039/b807462c.
Schedel C., Thalwitzer R., Khoshkhoo M.S., et al. // Z. Phys. Chem. - 2017. - V. 231(1). - P. 135-146. - DOI: 10.1515/zpch-2016-0863
Schedel C., Peisert H., Chassé T., et al. // Z. Phys. Chem. - 2018. - V. 232(9-11). - P. 1369-1381. - DOI: 10.1515/zpch-2018-1128.
Zhou Z., Hu H., Yang H., et al. // Chem. Commun. - 2008. - V. (39). - P. 4786-4788. - DOI: 10.1039/b809021a.
Zhang C., Zhou H.-P., Liao L.-Y., et al. // Adv. Mater. - 2010. - V. 22(5). - P. 633-637. - DOI: 10.1002/adma.200901722.
Boyer J.-C., Carling C.-J., Chua S.Y., et al. // Chem. - A Eur. J. - 2012. - V. 18(11). - P. 3122-3126. - DOI: 10.1002/chem.201103767.
Wu T., Barker M., Arafeh K.M., et al. // Angew. Chem. Intern. Ed. - 2013. - V. 52(42). - P. 11106-11109. - DOI: 10.1002/anie.201305253.
Boyer J.-C., Carling C.-J., Gates B.D., et al. // J. Am. Chem. Soc. - 2010. - V. 132(44). - P. 15766-1577. - DOI: 10.1021/ja107184z
Carling C.-J., Boyer J.-C., Branda N.R. // J. Am. Chem. Soc. - 2009. - V. 131(31). - P. 10838-10839. - DOI: 10.1021/ja904746s.
Carling C.-J., Boyer J.-C., Branda N.R. // Org. & Biomol. Chem. - 2012. - V. 10(30). - P. 6159-6168. - DOI: 10.1039/c2ob25368b.
Wu T., Boyer J.-C., Barker M., et al. // Chem. Mater. - 2013. - V. 25(12). - P. 2495-2502. - DOI: 10.1021/cm400802d.
Mi Y., Cheng H., Chu H., et al. // Chem. Sci. - 2019. - V. 10. - P. 10231-10239. - DOI: 10.1039/c9sc03524a.
Yang T., Liu Q., Li J., et al. // RSC Adv. - 2014. - V. 4 - P. 15613-15619. - DOI: 10.1039/c3ra47529h.
Zhai X., Shi F., Chen H., et al. // J. Nanosci. Nanotechnol. - 2011. - V. 11. - P. 9693-9696. - DOI: 10.1166/jnn.2011.5260.
Zheng K., Han S., Zeng X., et al. // Adv. Mater. - 2018. - V. 30(30). - P. 1801726(1-5). - DOI: 10.1002/adma.201801726.
Padgaonkar S., Eckdahl C.T., Sowa J.K., et al. // Nano Lett. - 2021. - V. 21. - P. 854-860. - DOI: 10.1021/acs.nanolett.0c04611.